首页|基于Sentinel-2影像的典型草甸型湖泊大气校正研究

基于Sentinel-2影像的典型草甸型湖泊大气校正研究

扫码查看
针对一种遥感影像大气校正算法很难同时适用于不同类型湖面的光谱校正问题,文章选取南四湖作为研究区,收集 2019-2022 年该区域"哨兵二号"(Sentinel-2)卫星遥感影像,采集同期宽敞湖面和水生植被覆盖湖面的光谱数据,基于自适应权重算法,利用Acolite、Sen2Cor和C2RCC三种传统大气校正方法优势,构建了两种多光谱影像大气校正新框架——自适应加权平均大气校正算法(AWA-AC)和改进的自适应加权平均大气校正算法(IAWA-AC)。使用各算法对南四湖Sentinel-2 影像进行大气校正试验,并对校正结果进行精度评价对比,结果表明:文章提出的影像大气校正新框架比传统单一算法效果更好,表现在研究时段区域内实测光谱和大气校正影像光谱的决定系数(R2)、均方根误差(RMSE)和平均无偏相对误差(AURE)等 3 个指标,最大提升值分别为 79。75%、71。55%和 70。43%。在无实测光谱数据推算R2 的前提下,使用文中构建的IAWA-AC算法对遥感影像进行大气校正,能够获得较好的光谱保真度。
Atmospheric Correction Research for Sentinel-2 Imagery for Typical Meadow-Type Lakes
Aiming at the problem that one remote sensing image atmospheric correction algorithm is difficult to be applied to the spectral correction of different types of lakes at the same time,we select Nansihu as the study area,collect Sentinel-2 images of the region from 2019 to 2022,collect the spectral data of spacious lakes and lakes covered by aquatic vegetation during the same period.Based on the adaptive weighting algorithm,two new frameworks for atmospheric correction of multispectral images,the Adaptive Weighted Average Atmospheric Correction Algorithm(AWA-AC)and the Improved Adaptive Weighted Average Atmospheric Correction Algorithm(IAWA-AC),are constructed by taking advantage of the advantages of the three traditional atmospheric correction methods,namely,Acolite,Sen2Cor and C2RCC.The results of the atmospheric correction experiments on the Sentinel-2 image of Nansi Lake using each algorithm and the evaluation of the comparative accuracies show that the new framework of atmospheric correction is more effective than the single traditional algorithm,and the new framework of atmospheric correction is better than the single traditional algorithm in terms of coefficient of determination(R2),root mean square error(RMSE),and average unbiased relative error(AURE)of the measured and atmospherically corrected image spectra in the area during the time period of the study.The new framework proposed in this study has the maximum enhancement values of 79.75%,71.55%and 70.43%for the three metrics,respectively,compared with the single traditional atmospheric correction algorithm.In the absence of measured spectral data to derive R2,atmospheric correction of remotely sensed images using the IAWA-AC algorithm constructed in this study is able to obtain better spectral fidelity.

atmospheric correctionAcolite algorithmC2RCC algorithmSen2Cor algorithmadaptive weighted averageNansi LakeSentinel-2 satellite

孟飞、冯建飞、付萍杰、张家威、陈飞勇

展开 >

山东建筑大学测绘地理信息学院,济南 250101

山东科技大学测绘与空间信息学院,青岛 266000

山东建筑大学资源与环境创新研究院,济南 250101

大气校正 Acolite算法 C2RCC算法 Sen2Cor算法 自适应加权平均 南四湖 "哨兵二号"卫星

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(6)