首页|基于光谱斜率差异与机器学习的土地覆盖变化检测融合算法

基于光谱斜率差异与机器学习的土地覆盖变化检测融合算法

扫码查看
在遥感影像的土地覆盖变化检测方法研究中,基于指数的模型是常用的传统手段之一。然而,大多传统变化检测算法在面对复杂地形时的表现往往难以达到预期,特别是针对发生变化的区域,容易出现大量的漏检现象。为了更准确地应对这些复杂的地貌特征差异,获取高精度的土地覆盖检测结果,文章将传统指数模型与机器学习技术进行了有机融合,提出了一种光谱斜率差异信息与随机森林分类模型相结合的变化检测算法。改进后的光谱斜率差异(Modified Spectral Gradient Difference,MSGD)变化检测算法继承了光谱斜率差异(Spectral Gradient Difference,SGD)指数压缩噪声信息来避免伪变化的特性,通过树状模型的分支结构优化了光谱斜率差异变化信息的完整性,实现了变化强度和变化方向两种属性的描述。选取上海浦东作为研究区域开展了土地覆盖变化检测实验,结果显示,改进的MSGD方法总体精度为 96。13%、漏检率为 0。94%、Kappa系数为 0。65,与原SGD方法以及变化向量分析(Change Vector Analysis,CVA)等传统方法相比,MSGD方法的土地覆盖变化检测结果更加准确可靠,漏检率减少了 50%以上,Kappa系数提高了 25%以上。因此,MSGD变化检测结果更加准确,在特大城市城市化进程导致的土地覆盖变化检测方面具有广阔的应用潜力。
A Fusion of Spectral Gradient and Machine Learning to Detect Megacity Land Cover Changes
Algebra models and machine learning are commonly used remote sensing methods in traditional land cover change detection studies.However,these traditional methods often fail to achieve accurate change detection on complex landscape,especially in detecting areas where changes have occurred,where a significant number of missed detections tend to occur.To more precisely classify land cover types and detect land cover changes,this study integrated index models and machine learning,proposing a change detection algorithm that combines spectral gradient difference information with random forest classification technology.This modified spectral gradient difference(MSGD)change detection method inherits the advantage of spectral gradient difference(SGD)that com-presses noise information and the strong ability of big data analysis.More importantly,it optimizes the completeness of the SGD change information through the branching structure of the tree model,achieving the description of both change intensity and change direction attributes.The results indicate that the proposed MSGD method detects land cover change with an overall accuracy of 96.13%,an misdetection rate of 0.94%and a Kappa coefficient of 0.65.Compared with traditional methods such as change vector analysis(CVA)and the original SGD method,the MSGD model reduced the missed detection rate of land cover change detection results by more than 50%and improved the Kappa coefficient by more than 25%.Therefore,the MSGD change detection results are more accurate,and it has more potential in megacity land cover change detection application.

change detectionfusion algorithmspectral gradientmachine learningremote sensing image

陆一闻、毛立身、谢一春、周美玲、杨何群、徐菁

展开 >

上海市生态气象和卫星遥感中心,上海 200030

中国地质环境监测院,北京 100081

东密歇根大学,伊普兰提 48197

广州市规划和自然资源局,广州 510000

上海浦东新区气象局,上海 200135

展开 >

变化检测 融合算法 光谱斜率 机器学习 遥感影像

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(6)