首页|基于MFF-DeeplabV3+的高分辨率遥感影像建筑提取方法

基于MFF-DeeplabV3+的高分辨率遥感影像建筑提取方法

扫码查看
为了实现高分辨率遥感影像的建筑物准确提取,在DeeplabV3+框架下提出了一种自动化提取方法。首先,选用带SE(Squeeze-and-Excitation)模块的SENet154 作为主干网络,以增强模型对图像特征信息的提取能力,影像经过SENet154 网络可以得到 6 个不同的特征图,再通过文章所提出的多特征融合网络(MFF)将其中 5 个低尺度的特征数据进行融合,这一过程可以充分利用不同尺度特征在局部细节和语义信息表征上的优势,做到高低尺度特征综合使用,提升模型的分割精度;然后将最高尺度、最高维度的特征图输入到ASPP模块中,利用空洞卷积扩大感受野,深度增强语义特征;最后,在Decoder部分将融合后的特征与ASPP模块得到的多尺度语义信息进行结合,得到建筑物的精细提取结果。该方法在公开的高分辨遥感建筑数据集上进行了SE模块效果提升试验、不同主干网络与多特征融合结合试验、多种常用方法对比试验,其准确率、召回率及F1-score指标均能达到 94%以上,平均交并比(IoU)指标接近 90%,建筑物提取的准确性和鲁棒性得到了明显提升,性能表现优异。
High-Resolution Remote Sensing Image Building Extraction Method Based on MFF-DeeplabV3+
In order to achieve accurate extraction of buildings from high-resolution remote sensing images,an automated extraction method is proposed within the DeeplabV3+framework.Firstly,SENet154 with SE module is selected as the backbone network to enhance the model's ability to extract image feature information.After the SENet154 network,the image can obtain 6 different feature maps.Then,the proposed Multi Feature Fusion Network(MFF)is used to fuse 5 low scale feature data.This process can fully utilize the advantages of different scale features in local detail and semantic information representation,achieve the comprehensive use of high and low scale features,and improve the segmentation accuracy of the model.Then,the highest scale and highest dimension feature maps are input into the ASPP module,and dilated convolution is used to expand the receptive field and enhance semantic features in depth.Finally,in the Decoder part,the fused features are combined with the multi-scale semantic information obtained from the ASPP module to obtain fine-grained extraction results of buildings.The proposed method is evaluated on publicly available high-resolution remote sensing building datasets through experiments on the effectiveness of the SE module,the combination of different backbone networks and multi-feature fusion,and comparisons with various commonly used methods.The method achieves precision,recall,and F1 scores of over 94%and an IoU score close to 90%.When using the proposed method,the accuracy and robustness of building extraction are significantly improved,and the performance is more outstanding.

remote sensing imagebuilding extractionsqueeze-and-excitationsemantic segmentationMFF

刘思言、王春月、付璐、李玲

展开 >

长光卫星技术股份有限公司,长春 130000

吉林省卫星遥感应用技术重试验室,长春 130000

遥感影像 建筑提取 注意力机制 语义分割 多特征融合

2024

航天返回与遥感
中国航天科技集团公司第五研究院第508研究所

航天返回与遥感

CSTPCD北大核心
影响因子:0.669
ISSN:1009-8518
年,卷(期):2024.45(6)