首页|倾转四旋翼无人机自适应RNN互补滑模控制

倾转四旋翼无人机自适应RNN互补滑模控制

扫码查看
针对倾转四旋翼无人机(TQUAV)在未知扰动下飞行的轨迹跟踪问题,提出了一种自适应循环神经网络(RNN)互补滑模控制(CSMC)方法.首先,将倾转四旋翼无人机动力学系统分为位置子系统和姿态子系统并分别设计互补滑模控制器.考虑到无人机在飞行过程中受到外部扰动的影响,由滑模控制方法得到的理想控制器包含未知的干扰项,因此使用循环神经网络来估计未知扰动.然后,为降低循环神经网络组合估计误差的影响并削弱控制器抖振,引入超螺旋滑模控制(STSMC)设计切换控制器.最后,通过仿真验证了所提方法的有效性.
Adaptive RNN Complementary Sliding Mode Control for Tilting Quadrotor UAV
An adaptive complementary sliding mode control(CSMC)based on recurrent neural network(RNN)is proposed to solve the trajectory tracking problem of tilt quadrotor unmanned aerial vehicle(TQRUAV)flying under unknown disturbances.Firstly,the dynamic system of the TQRUAV is divided into position subsystem and attitude subsystem,and complementary sliding mode controllers are designed sepa-rately.By considering the influence of external disturbances on the flight process of TQRUAV,the ideal con-troller obtained by sliding mode control contains unknown disturbance subjects.Therefore,the RNN is used to estimate the unknown disturbances.Then,in order to reduce the impact of combined estimation errors of RNN and weaken controller chattering,a super-twisting sliding mode control(STSMC)is introduced to de-sign switching controllers.Finally,the effectiveness of the proposed method is verified through simulation.

Tilting quadrotor UAVComplementary sliding mode controlAdaptive controlRecurrent neural network

李晨、熊晶晶

展开 >

中国计量大学机电工程学院,杭州 310018

倾转四旋翼无人机 互补滑模控制 自适应控制 循环神经网络

浙江省自然科学基金资助项目

LQ21F030016

2024

航天控制
北京航天自动控制研究所

航天控制

CSTPCD
影响因子:0.29
ISSN:1006-3242
年,卷(期):2024.42(1)
  • 14