首页|航天涉密信息保密审核大模型增强方法

航天涉密信息保密审核大模型增强方法

扫码查看
针对航天航空领域资料保密审查的严格要求,现有的人工筛查方法存在成本高昂、关键词匹配精度不足等问题,提出了一种结合大模型的审查方法,用于提升涉密信息的筛查效率和准确性.首先分析了航天航空领域涉密信息的特点,提出了一种基于大模型的保密审核增强架构,该架构结合了动态垂类专家System Prompt,能够从技术涉密和商业涉密等多个角度提高审查的细粒度和准确率.通过引入基于关键词的动态System Prompt机制,实现了大模型语义理解能力与关键词实时更新能力的有效结合.此外,为了防止大模型的过度审核,设计了一种混合式交叉微调策略,显著提高了涉密信息的召回率,达到了 96%.通过在自研的1000条高质量测试集上的实验,本增强框架可以将全球已发布的主流大模型在保密审核任务上的准确率提升18%,验证了本文提出框架的有效性.
Enhancing Aerospace Classified Information Security through Large-scale Models
Regarding the stringent requirements of information confidentiality review in the aerospace field,current manual screening methods are suffering from high costs and insufficient accuracy of keyword matc-hing.An enhanced review framework integrated with large language models is proposed to improve the effi-ciency and accuracy of confidential information screening.Initially,the characteristics of confidential infor-mation are analyzed in the aerospace sector,an architecture that enhances the auditing performance of large language models is introduced in this study,which is combined with dynamic domain-specific expert system prompts to enhance the granularity and accuracy of reviews among multiple perspectives including technical and business confidentiality.By introducing a dynamic system prompt mechanism,the framework is effec-tively combined the semantic understanding capabilities of large language models with the real-time upda-ting of keywords.Additionally,in order to prevent excessive auditing by the large language model,a hy-brid cross-training strategy is developed,which significantly improves the recall rate of confidential informa-tion that reaches by 96%.Experiments on a self-developed high quality test set of1000 entries demonstrates that the proposed method outperforms global open-source large language models by 18%in aerospace classi-fied information inspection tasks.

Large language modelText content moderationIntelligent agentFine-tuningAerospace classified information inspection

郑佳斌、周瀚阁、蒋忠林、陈勇

展开 >

浙江大学航空航天学院,杭州 310058

吉利汽车研究院(宁波)有限公司,宁波 315311

大模型 内容审核 大模型智能体 模型微调 航天涉密检查

宁波市自然科学基金

2023J188

2024

航天控制
北京航天自动控制研究所

航天控制

CSTPCD
影响因子:0.29
ISSN:1006-3242
年,卷(期):2024.42(2)
  • 4