首页|基于EKF/PI滤波的小推力轨控期间自主导航算法

基于EKF/PI滤波的小推力轨控期间自主导航算法

扫码查看
研究了以电推小推力作为主要的轨控推力来源的高轨卫星在轨控期间的自主导航算法.针对GNSS接收机在高轨的测速精度相对较差,以及轨控期间电推产生的推力较小,常规加速度计无法准确测量,从而导致在轨控期间自主导航精度下降的问题,提出了基于EKF+PI滤波的一体化自主导航算法.通过结合EKF滤波和PI滤波算法,经EKF滤波抑制GNSS接收机定位数据的测量白噪声,然后通过PI滤波估计电推加速度并反馈给EKF滤波算法,提高电推工作期间EKF算法的导航精度.仿真结果表明,基于EKF+PI滤波的一体化自主导航算法可以准确估计出电推加速度大小,同时可有效提高连续小推力轨控期间的自主导航精度.
Autonomous Navigation Algorithm During Continuous Low Thrust Orbit Control Based on EKF and PI Fiter
The autonomous navigation algorithm during continuous low-thrust orbit control for high-orbit satellites with electric thruster is researched.In view of the relatively poor speed measurement precision of GNSS receivers in high orbit,and the small acceleration generated by electric thruster during orbit control can not be measured accurately by conventional accelerometers,which leads to the decline of autonomous navigation accuracy during orbit control,an integrated autonomous navigation algorithm based on EKF+PI filter is proposed.Firstly,the EKF filter is designed to suppress the high frequency noise of positioning data generated by the GNSS receiver.Then,the acceleration generated by the electric thruster is estimated by PI filter and fed back to the EKF algorithm.By combing the EKF filter with PI filter,the precision of the navigation algorithm is improved during the electric thruster's working.Lastly,the mathematical simu-lation is implemented,and the result shows that the integrated autonomous navigation algorithm based on EKF+PI filter can accurately estimate the acceleration magnitude generated by electric thruster.Mean-time,the integrated algorithm proposed can effectively improve the precision of autonomous navigation dur-ing continuous low-thrust orbit control.

Autonomous navigationExtended Kalman filterPI filterAcceleration estimationLow-thrust orbit controlElectric thruster

梁巨平、孟其琛、黄京梅、刘笑、陈银河

展开 >

上海航天控制技术研究所,上海 201109

空间智能控制技术重点实验室,上海 201109

自主导航 扩展卡尔曼滤波 PI滤波 加速度估计 小推力轨控 电推进

2024

航天控制
北京航天自动控制研究所

航天控制

CSTPCD
影响因子:0.29
ISSN:1006-3242
年,卷(期):2024.42(3)
  • 10