首页|结构突变航天器惯量参数在轨辨识方法

结构突变航天器惯量参数在轨辨识方法

扫码查看
针对在轨服务的航天器惯量参数突变情况,提出了基于卫星在轨姿态测量及控制信息实现惯量参数实时辨识的方法,设计了递推最小二乘(RLS)及扩展卡尔曼滤波(EKF)辨识算法.在RLS算法中引入自适应遗忘因子,每次递推过程中通过分配先验数据和当前数据的权重确保产生突变后辨识值的及时跟踪;在EKF算法中明确先验预测协方差中参数变化的影响,将其代入更新预测协方差矩阵以应对惯量参数的突变.仿真结果表明,考虑惯量参数突变的场景,RLS算法和EKF算法的辨识精度可达1.5%和1%,辨识时间分别优于30 s和40 s;考虑惯量缓慢时变的场景,两种方法均可实现惯量参数的在轨实时辨识,辨识精度满足姿控系统需求.
On-Orbit Identification of Inertia Tensor of Spacecraft with Structural Mutation
Aiming at unexpected the sudden change in inertia parameters of spacecraft on-orbit servicing,real-time identification methods of inertial parameters based on on-orbit attitude and control information are proposed,and recursive least squares(RLS)and extended Kalman filter(EKF)identification algorithms are designed.Adaptive forgetting factors are introduced into the RLS algorithm,which assign weights of prior data and current data during each iteration process to ensure the identification value tracking in time.In the EKF algorithm,the influence of parameter variation on the prior prediction covariance is defined,and it is substituted to update the prediction covariance matrix to solve the mutation of inertia parameters.Under consideration of the mutation in inertia parameters,the simulation results show that the identification accuracy of RLS and EKF can reach 1.5%and 1%,and the identification time is better than 30 s and 40 s respectively;In the scenario of time-varying inertia,both methods can achieve on-orbit identification of iner-tia parameters,and the identification accuracy fulfills the requirements of the attitude control system.

Spacecraft with structural mutationAdaptive recursive least squareExtended Kalman filterOn-orbit identification

许诺、夏喜旺、贺雄峰、范城城、李照雄、张永合

展开 >

中国科学院微小卫星创新研究院,上海 201203

中国科学院卫星数字化技术重点实验室,上海 201203

中国科学院大学,北京 100049

结构突变航天器 自适应递推最小二乘 扩展卡尔曼滤波 参数在轨辨识

国家重点研发计划上海市自然科学基金

2021YFC220270419ZR1453200

2024

航天控制
北京航天自动控制研究所

航天控制

CSTPCD
影响因子:0.29
ISSN:1006-3242
年,卷(期):2024.42(4)