首页|一种太阳帆轨道深度强化学习设计与制导方法

一种太阳帆轨道深度强化学习设计与制导方法

扫码查看
针对太阳帆航天器在轨飞行面临复杂不确定条件的问题,提出一种基于深度强化学习的轨道设计与制导一体化算法.该算法在太阳帆航天器轨道动力学基础上,将太阳光压力模型不确定性、导航误差、控制执行误差和随机触发的安全事件等作为不确定条件纳入到太阳帆航天器在轨飞行的马尔科夫决策过程建模中,设计反映太阳帆能量供应优化的最小太阳相角奖励函数,采用近端策略优化算法进行训练,实现复杂不确定条件下太阳帆航天器轨道优化设计与鲁棒制导.将其应用到太阳帆航天器探测近地小行星2019 GF1的日心转移任务中,仿真结果表明新算法能降低不确定条件下标称轨道跟踪飞行的终端到达精度,并减小日心转移轨道的太阳相角.
Trajectory Design and Robust Guidance for Solar Sail Spacecraft under Complex Uncertain Conditions
In response to the complex and uncertain conditions faced by solar sail spacecraft during in-orbit flight,a deep reinforcement learning-based integrated algorithm for trajectory design and robust guidance is proposed.The uncertainties conditions acted as solar radiation pressure model uncertainty,navigation er-ror,control execution error and randomly triggered safety events are incorporated into the Markov decision process modeling of solar sail spacecraft in-orbit flight,based on the algorithm proposed regarding orbital dynamics of solar sail spacecraft.A reward function refllecting the optimization of solar sail energy supply is designed by the minimum solar phase angle,and training is conducted by using the proximal policy optimi-zation algorithm to achieve the optimization design of solar sail spacecraft trajectories and robust guidance under complex and uncertain conditions.This algorithm is applied to the heliocentric transfer mission of a solar sail spacecraft exploring the near-Earth asteroid 2019 GF1.Simulation results show that the terminal arrival precision of nominal trajectory tracking fllight under uncertain conditions can be decreased and the solar phase angle along the trajectory is reduced by using this new algorithm.

Solar sail spacecraftTrajectory designRobust guidanceUncertaintiesDeep reinforcement learning

袁浩、王杰、何管维

展开 >

国防科技大学空天科学学院,长沙 410073

太阳帆航天器 轨道设计 鲁棒制导 不确定性 深度强化学习

2024

航天控制
北京航天自动控制研究所

航天控制

CSTPCD
影响因子:0.29
ISSN:1006-3242
年,卷(期):2024.42(6)