首页|基于VAE-DRSN的微纳卫星推力器故障诊断方法

基于VAE-DRSN的微纳卫星推力器故障诊断方法

扫码查看
针对微纳卫星推力器故障诊断问题,提出了一种基于变分自编码器-深度残差收缩网络(VAE-DRSN)的数据驱动推进系统故障诊断方法.该方法采用变分自编码器对姿态数据与控制器输出进行特征提取,通过深度残差收缩神经网络对提取的特征进行特征分类,可以高精度地在线检测、诊断和定位推力器的卡开、卡关及效率降低故障,无需卫星推力器模型及动力学模型,且无需单独配备硬件测量机构.经数值仿真验证,结果表明:该方法对于单喷口故障检测正确率可达99%以上,具有良好推力器故障定位及诊断能力.
Fault Diagnosis Method for Micro-nano Satellite Thruster Based on VAE-DRSN
Aiming at the problem of fault diagnosis for micro-nano satellite thrusters,a data-driv-en propulsion system fault diagnosis method based on variational autoencoder-deep residual shrinkage network(VAE-DRSN)is proposed in this paper.This method uses a variational au-toencoder to extract the features from attitude data and controller output,and the extracted fea-tures are classified through a deep residual shrinkage neural network.It can accurately detect,di-agnose and locate the stuck on/off and make efficiency reduction faults of thrusters online,with-out the need for satellite thruster model and dynamic model,and without the need for separate hardware measurement mechanism.The numerical simulation results show that the accuracy of this method for single nozzle fault detection can reach over 99%,and it has good ability for thruster fault location and diagnosis.

micro-nano satellitefault diagnosisdeep learningvariational autoencoderthruster fault

朱劲锟、郑侃、梁振华、唐嘉程

展开 >

南京理工大学 机械工程学院,南京 210094

微纳卫星 故障诊断 深度学习 变分自编码器 推力器故障

2024

航天器工程
中国空间技术研究院总体部(北京空间飞行器总体设计部)

航天器工程

CSTPCD北大核心
影响因子:0.552
ISSN:1673-8748
年,卷(期):2024.33(2)
  • 10