首页|ECRIT等离子体特性数值模拟分析

ECRIT等离子体特性数值模拟分析

扫码查看
针对航天器推进系统电子回旋共振离子推力器(ECRIT)电离效率易受放电室结构参数和工作参数影响,主要技术参数之间存在耦合不能单独优化的问题,文章采用多物理场仿真软件开展数值模拟,利用自适应函数细化电子回旋共振(ECR)区网格法提高仿真精度,探究不同磁路结构参数、工质气体、天线构型、微波功率对ECR推力器性能的影响规律,使电子在ECR区能够获得最大能量,经部分试验验证(微波输入功率和工质气体对放电影响),结果表明:磁环间距、内磁环-波导小端面距离和磁体高度对ECR区的分布影响较大,磁体宽度的影响较小;氙气的电子数密度高于氩气;L型天线电子密度和功率沉积高于杆天线;电子数密度和碰撞功率损耗随着入射微波功率增大而增大,可为ECR推力器设计提供参考.
Numerical Simulation and Analysis of ECRIT Plasma Characteristics
In response to the issue that the ionization efficiency of the electron cyclotron resonance ion thruster(ECRIT)in spacecraft propulsion system is easily affected by the structural parame-ters and working parameters of the discharge chamber,and the coupling between the main tech-nical parameters cannot be optimized independently,the multi-physics simulation software is a-dopted to carry out numerical simulation in this paper.The adaptive function is used to refine the electron cyclotron resonance(ECR)grid method to improve the simulation accuracy,the influence of different magnetic circuit structure parameters,working gas,antenna configuration and micro-wave power on the performance of ECR thrusters is explored,so that electrons can obtain the maximum energy in the ECR region,which is partially verified by some tests(the influence of microwave input power and working medium gas on discharge).The results show that the mag-netic ring distance,the inner ring-waveguide small end distance and the magnet height have great influence on the ECR region distribution,while the width of the magnet has a relatively small in-fluence.The electron density of xenon is higher than that of argon gas.The electron density and power deposition of L-shaped antennas are higher than those of pole antennas.The electron num-ber density and collision power loss increase with the increase of incident microwave power,which can provide reference for the design of ECR thrusters.

spacecraft propulsion systemECRITelectromagnetic simulationmagnetic circuit structureworking gasantenna configurationmicrowave power

贺亚强、耿海、吴先明、王紫桐、孙新锋、吴辰宸、蒲彦旭

展开 >

兰州空间技术物理研究所 真空技术与物理重点实验室,兰州 730000

航天器推进系统 电子回旋共振离子推力器 电磁仿真 磁路结构 工质气体 天线构型 微波功率

2024

航天器工程
中国空间技术研究院总体部(北京空间飞行器总体设计部)

航天器工程

CSTPCD北大核心
影响因子:0.552
ISSN:1673-8748
年,卷(期):2024.33(2)
  • 12