首页|圆周上时间周期反应扩散方程全局吸引子的存在条件

圆周上时间周期反应扩散方程全局吸引子的存在条件

扫码查看
针对圆周上时间周期反应扩散方程,给出耗散性假设,证明了该方程存在全局吸引子.首先,建立合适的分数幂空间,应用算子半群的相关理论证明该方程在此分数幂空间中存在全局解.其次,基于全局解定义Poincaré映射,生成离散半流.最终由离散半流的紧性和点耗散性得到全局吸引子的存在性.
An Existence Condition for Global Attractor of Time-Periodic Reaction-Diffusion Equations on the Circle
For a time-periodic reaction-diffusion equation on the circle,the existence of a global at-tractor was proved under dissipative assumptions.Firstly,a suitable fractional power space was es-tablished in this paper,and by using the operator semigroup theory it can be proved that the equation has a global solution in the space.Next,based on the global solution,the Poincaré map was defined,which can generate a discrete semiflow.Finally,the existence of the global attractor was obtained from the compactness and point dissipativity of the discrete semiflow.

reaction-diffusion equationperiodic systemglobal attractorfractional power space

苏婷婷、周盾、邱志鹏

展开 >

南京理工大学数学与统计学院,江苏南京 210094

南京理工大学基础教学与实验中心,江苏无锡 214443

反应扩散方程 周期系统 全局吸引子 分数幂空间

国家自然科学基金

12071217

2024

淮阴师范学院学报(自然科学版)
淮阴师范学院

淮阴师范学院学报(自然科学版)

影响因子:0.259
ISSN:1671-6876
年,卷(期):2024.23(2)
  • 14