首页|融合标尺信息的足迹性别检验方法

融合标尺信息的足迹性别检验方法

扫码查看
提出了 一种融合标尺信息的足迹性别检验方法.该方法采用Sobel算子得出图像中的标尺和足迹位置,基于位置信息提取足迹和标尺的全局和局部特征进行特征融合,将标尺的比例信息作为度量足迹的一部分来预测足迹性别.该研究在标准足迹检验数据集上进行了实证比较,预测准确率93.2%,比基准方法提高了 2.5%.同时,消融实验表明,融合标尺信息是提高预测准确率的关键性因素.
Footprint Gender Predicting Method based on Fusion of Ruler Information
This study proposes a foot gender identification method that incorporates ruler informa-tion.The proposed method first uses the Sobel operator to extract the positions of the ruler and foot-prints in the image.Then,based on the position information,it extracts global and local features of the footprints and ruler,and fuses them to obtain the combined features.Finally,the ratio informa-tion of the ruler is used as a metric feature to predict the gender of the footprint.The experimental re-sults on a standard dataset of footprint examination show that the proposed method achieves an accu-racy of 93.2%,which is higher than the baseline method by 2.5%.The results also demonstrate that incorporating ruler information is a key factor in improving the prediction accuracy.

footprintconvolutional neural network(CNN)physical evidence inspectiongender prediction

曹俭民、祁麟、张一平、张飞、周逸阳

展开 >

江苏省太湖疗养院信息科,江苏无锡 214000

江苏警官学院刑事科学技术系,江苏南京 210031

江苏警官学院计算机信息与网络安全系,江苏南京 210031

足迹 卷积神经网络 物证检验 性别预测

国家自然科学基金江苏省高等学校科学研究项目江苏省高等学校大学生实践创新创业训练计划江苏省高等学校大学生实践创新创业训练计划

719740942022SJYB0480202210329046Y202310329061Y

2024

淮阴师范学院学报(自然科学版)
淮阴师范学院

淮阴师范学院学报(自然科学版)

影响因子:0.259
ISSN:1671-6876
年,卷(期):2024.23(2)
  • 5