首页|椭圆型方程系数反演问题的条件稳定性及离散正则化解的误差估计

椭圆型方程系数反演问题的条件稳定性及离散正则化解的误差估计

扫码查看
椭圆型方程反问题是数学物理反问题领域的一个重要部分,基于整个区域的测量值,提出椭圆型方程模型中描述介质性质的系数反演问题,利用椭圆型方程弱解性质和Sobolev嵌入定理,得到反问题的条件稳定性估计.进一步利用Galerkin有限元离散优化问题,得到优化问题解的误差分析结果.
Conditional Stability of Coefficient Inversion for Elliptic Equation and Error Estimation for Discrete Regularization Solutions
The inverse problem of elliptic equations is an important part of the field of inverse prob-lems for mathematical physics equations.Based on the measured values of the entire region,a coeffi-cient inversion problem describing the properties of the medium in the elliptic equation model is pro-posed.By using the weak solution property of the elliptic equation and the sobolev embedding theo-rem,the conditional stability estimate of the inverse problem is obtained.Furthermore,the regularized output least-squares formulation is formulated for the elliptic inverse problem.And the continuous for-mulation is discretized by the Galerkin FEM with continuous piecewise linear elements,and the error analysis is provided.

elliptic equationcoefficientinversionconditional stabilityerror analysis

王兵贤、徐梅、张玲萍

展开 >

淮阴师范学院数学与统计学院,江苏淮安 223300

椭圆型方程 系数 反演 条件稳定性 误差分析

国家自然科学基金项目江苏省高校自然科学面上项目淮阴师范学院博士启动基金项目

1150123618kJD11000231WBX00

2024

淮阴师范学院学报(自然科学版)
淮阴师范学院

淮阴师范学院学报(自然科学版)

影响因子:0.259
ISSN:1671-6876
年,卷(期):2024.23(3)
  • 2