首页|基于自训练的多标签岩矿石薄片分类方法

基于自训练的多标签岩矿石薄片分类方法

扫码查看
岩矿石薄片识别是一项专业性要求极高的任务,人工识别常出现不可避免的主观错误,且效率极低.深度学习图像识别技术是可以高效进行岩矿石薄片识别的方法,但训练深度学习模型需要大量标注数据,因此如何高效利用有限标注数据具有重要意义.通过采用多标签分类方法,在有标签数据集上先训练一个分类器,然后使用该分类器为大量无标注的岩矿石薄片生成伪标签,最后使用有标签的训练数据和所有无标签数据重新训练模型.结果表明,采用多标签分类方法识别岩矿石薄片结构及矿物是可行的,同时使用半监督学习方法训练模型,在不进行大量人工标注的情况下,可提高该模型的泛化能力.
Multi-label rock ore slice classification approach based on self-training
Rock ore slice identification is a task that requires a high level of expertise.Manual identification often results in unavoidable subjective errors and is highly inefficient.Deep learning image recognition technology can effi-ciently perform rock ore slice identification,but training deep learning models requires a large amount of annotated data.Therefore,it is important to find efficient ways to utilize limited annotated data.By adopting a multi-label classifi-cation approach,a classifier can be trained on a labeled dataset,and then this classifier is used to generate pseudo-labels for a large number of unlabeled rock ore slice images.Finally,the model is retrained using the labeled training data and all the unlabeled data.The results show that the use of multi-label classification approach for identification of rock ore slice structures and minerals is feasible.Additionally,this paper employs a semi-supervised learning approach to train the model and improve the model's generalization ability without requiring a large amount of manual annota-tion.

rock ore sliceimage recognitionmulti-label classificationsemi-supervised learningclassifierdeep learn-ing model

吴博、李永胜、王睿、徐正林、冉祥金、薛林福

展开 >

吉林大学地球科学学院

中国地质调查局发展研究中心

自然资源部矿产勘查技术指导中心

岩矿石薄片 图像识别 多标签分类 半监督学习 分类器 深度学习模型

中国地质调查局矿调项目

DD20190159

2024

黄金
长春黄金研究院

黄金

CSTPCD
影响因子:0.446
ISSN:1001-1277
年,卷(期):2024.45(2)
  • 13