首页|基于模态分解和自注意力机制的短期负荷预测

基于模态分解和自注意力机制的短期负荷预测

扫码查看
电力负荷数据的波动性和非平稳性一直是负荷预测的难点,直接构建预测模型的预测效果较差.为此,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和结合自注意力机制(SAM)的双向长短期记忆网络(BiLSTM)的电力负荷预测方法.该方法首先利用CEEMDAN算法将电力负荷数据分解为多个本征模态分量,降低原始负荷数据的波动性;然后对每个负荷分量分别构建SAM-BiLSTM网络预测模型;最后,将分量预测结果叠加重构得到电力负荷预测结果.实验结果表明,CEEMDAN-SAM-BiLSTM算法相比较于SVR、DNN、LSTM和BiLSTM预测精度分别提升了 2.78%、1.99%、1.28%和0.96%,有效地提高了负荷预测精度.
Short-term Load Forecasting Based on Modal Decomposition and Self Attention Mechanism
Short-term power load forecasting plays an important role in the safe operation of power system.The fluctuation and non-stationarity of power load data has always been a difficulty in load forecasting,and the forecasting effect of directly building a forecasting model is poor.To this end,a power load prediction method based on Adaptive Noise Complete Ensemble Empirical Mode Decomposition(CEEMDAN)and Bidirectional Long Short-Term Memory Network(BiLSTM)combined with Self-Attention Mechanism(SAM)is proposed.Firstly,CEEMDAN algorithm is used to decompose the power load data into multiple eigen modal components to reduce the volatility of the original load data;Then,the SAM-BILSTM net-work prediction model is constructed for each load component;Finally,the power load forecasting results are obtained by superposition and reconstruction of the component forecasting results.The experimental results show that CEEMDAN-SAM BiLSTM algorithm improves the forecasting accuracy by 2.78%,1.99%,1.28%and 0.96%respectively compared with SVR,DNN,LSTM and BiLSTM,and effectively im-proves the load forecasting accuracy.

complete ensemble empirical mode decompositionself-attention mechanismbi-directional long short-term memory networkload forecasting

李豪、朱莉、曹明海、高心宝

展开 >

湖北工业大学电气与电子工程学院,湖北武汉 430068

湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室,湖北 武汉 430068

完备集合经验模态分解 自注意力机制 双向长短期记忆网络 短期电力负荷预测

2024

湖北工业大学学报
湖北工业大学

湖北工业大学学报

CHSSCD
影响因子:0.258
ISSN:1003-4684
年,卷(期):2024.39(5)