首页|基于SSA-BiLSTM-AT的短期风电功率预测

基于SSA-BiLSTM-AT的短期风电功率预测

扫码查看
针对短期风电功率的复杂性与多样性,提出一种含注意力机制的双向长短期记忆网络(BiLSTM)神经网络和麻雀算法(SSA)调参的短期风电功率预测模型,SSA-BiLSTM-AT.首先对输入数据进行异常值处理和归一化,采用Pearson相关系数法分析风电功率和各特征之间的关系,剔除数据中的相关度较低的特征,以提高模型的预测精度;针对BiLSTM超参数选择困难的问题,利用麻雀算法对BiLSTM中学习率、迭代次数、第1和第2隐含层节点数4个重要参数进行智能迭代优化,得到最优参数后利用BiLSTM进行预测;最后引入注意力机制,通过注意力权重突出关键因素的影响,挖掘风电数据的内部规律.以新疆某风电站的历史数据作为实际算例,验证了所提模型线性回归拟合能力的稳定性和提升预测精度的有效性.
Short-term Wind Power Prediction Based on SSA-BiLSTM-AT Model
To address the complexity and diversity of short-term wind power,a Bi-directional Long Short-Term Memory(BiLSTM)neural network containing AttentionMechanism and Sparrow Algorithm(SSA)tuned to the short-term wind power prediction model,SSA-BiLSTM-AT,is proposed.Firstly,the input data are processed and normalized with outliers,and the relationship between wind power and each feature is analyzed by the Pearson correlation coefficient method to analyze the relationship between wind power and each feature,and eliminate the features with low correlation in the data,so as to improve the predic-tion accuracy of the model;Aiming at the problem of BiLSTM hyperparameter selection difficulty,the four important parameters of learning rate,adaptation degree,and the number of nodes in the 1st and 2nd implicit layers in BiLSTM are optimized intelligently and iteratively by the sparrow algorithm,and the op-timal parameters are obtained and then the BiLSTM is used for prediction;finally the attention mechanism is introduced,and the attention weights are used to highlighting the influence of key factors and mining the internal laws of wind power data.The stability and effectiveness of the proposed model's linear regression fitting ability are verified by using the historical data of a wind power station in Xinjiang as a practical cal-culation example.

short-term wind power forecastBi-directional Long Short-Term MemoryAttention mecha-nismsparrow search algorithm

王珊珊、吴霓、何嘉文、朱威、杨宇晨

展开 >

湖北工业大学电气与电子工程学院,湖北武汉 430068

太阳能高效利用及储能运行控制湖北省重点实验室,湖北武汉 430068

短期风电功率预测 BiLSTM算法 注意力机制 麻雀算法

2024

湖北工业大学学报
湖北工业大学

湖北工业大学学报

CHSSCD
影响因子:0.258
ISSN:1003-4684
年,卷(期):2024.39(5)