首页|基于RoBERTa的评论与评分推荐系统模型研究

基于RoBERTa的评论与评分推荐系统模型研究

扫码查看
原始推荐系统的词嵌入部分训练成本高昂且难以泛化,提出一种基于预训练模型RoBERTa的评论与评分推荐模型PANN,利用RoBERTa作为预训练模型,使用动态掩码策略和字节级词汇表进行训练,解决了单词的一词多义问题.该模型可以从输入序列中提取特征,具有很高的泛化性能.同时,PANN模型拥有用户和项目两个网络,这两个网络结构相同但分别训练参数和提取特征.最后使用因式分解机对两个网络的输出特征进行交互,以预测用户对项目的兴趣,即用户对项目可能的评分.实验结果表明,该PANN模型在大多数数据集上优于传统模型.
RoBERTa-based Recommendation for Reviews and Ratings
Recommendation systems based on user reviews and ratings of items are a hot research area.However,the word embedding part of the original recommender system is expensive to train and difficult to generalize.We propose in a novel neural network based on the pre-trained language model via an atten-tion mechanism for the reviews and ratings,named based on a Pre-trained model an Attention Neural Net-work(PANN).The paper utilizes the RoBERTa as the pre-trained model,which uses a dynamic masking strategy and byte level vocabularies for training.It solves the problem of multiple meanings of words,and can extract features from the input sequence with high generalization performance.The model employs two networks,users and items as its two networks,to train parameters and extract the features respectively,and finally use the factorization machine to interact two features to predict the user's interest in the item,in other words,the possible user ratings upon items.The experimental results demonstrate the proposed model outperforms conventional models on most datasets.

pre-trained modelrecommendation systemrecurrent neural networkattention mechanism

张姝曦、陈建峡、肖亮、王天赐、陈志康、王菁

展开 >

湖北工业大学计算机学院,湖北武汉 430068

预训练模型 推荐系统 循环神经网络 注意力机制

2024

湖北工业大学学报
湖北工业大学

湖北工业大学学报

CHSSCD
影响因子:0.258
ISSN:1003-4684
年,卷(期):2024.39(5)