首页|不稳定动脉粥样硬化斑块中铜死亡相关特征基因的鉴定

不稳定动脉粥样硬化斑块中铜死亡相关特征基因的鉴定

扫码查看
目的:通过生物信息学鉴定铜死亡和动脉粥样硬化斑块不稳定性相关的特征基因.方法:从基因表达综合数据库下载动脉粥样硬化斑块相关数据集GSE163154、GSE41571、GSE43292.合并三个数据集,根据收集到的铜死亡相关基因(CRGs)对合并后的数据集进行差异表达分析.使用三种机器学习算法筛选差异表达的CRGs中的特征基因,并通过外部数据集GSE28829验证了结果.结果:共鉴定出27个差异表达的CRGs.基于3种机器学习算法(LASSO、RF和SVM-RFE),筛选出5个特征基因ATOX1、NLRP3、MAP1LC3A、SLC31A1和ATP7B.在外部数据集中通过受试者工作特性(ROC)曲线验证诊断效能.结论:结果表明,铜死亡与动脉粥样硬化斑块的不稳定性密切相关,为不稳定动脉粥样硬化斑块的发病机制和治疗提供了新的见解.
Identification of cuproptosis-related characteristic genes in unstable atherosclerotic plaque
Objective:To identify the characteristic genes related to cuproptosis and atherosclerotic plaque instability through bioinformatics.Methods:Datasets(GSE163154,GSE41571,and GSE43292)re-lated to atherosclerotic plaque were downloaded from the comprehensive database of gene expression.Three datasets were merged and differential expression analysis was based on the collected cuproptosis-related genes(CRGs).Three algorithms of machine learning were used to screen the characteristic genes in the differentially expressed CRGs,and the results were verified using the external dataset GSE28829.Results:A total of 27 differentially expressed CRGs were identified.Based on three ma-chine learning algorithms,which contain algorithms of least absolute shrinkage and selection operator(LASSO),support vector machine-recursive feature elimination(SVM-RFE),and random forest(RF),five feature genes,ATOX1,NLRP3,MAP1LC3A,SLC31A1,and ATP7B,were select-ed.Diagnostic effectiveness was verified using receiver operating characteristic(ROC)curves in exter-nal datasets.Conclusion:The results show that copper death is closely related to the instability of ath-erosclerotic plaque,which provides new insights into the pathogenesis and treatment of unstable ath-erosclerotic plaque.

CuproptosisUnstable Atherosclerosis PlaqueGene ExpressionMachine Learning

贺天文、朱浩彦、鲁志兵

展开 >

武汉大学中南医院心血管内科 湖北 武汉 430071

铜死亡 不稳定动脉粥样硬化斑块 基因表达 机器学习

国家自然科学基金重点项目武汉大学中南医院优秀博士(博士后)项目

82070425ZNYB2020027

2024

武汉大学学报(医学版)
武汉大学

武汉大学学报(医学版)

CSTPCD
影响因子:0.959
ISSN:1671-8852
年,卷(期):2024.45(6)