首页|基于深度学习的慢性萎缩性胃炎诊断模型在临床中的诊断效果

基于深度学习的慢性萎缩性胃炎诊断模型在临床中的诊断效果

Diagnostic effect of a deep learning-based system for chronic atrophic gastritis in clinical practice

扫码查看
目的:探讨基于人工智能(AI)的慢性萎缩性胃炎诊断模型在真实临床环境中的诊断准确度.方法:选取收集江夏中医院2022年8月—2023年8月期间行胃镜检查的患者案例作为真实世界测试集,评估该模型的泛化能力.内镜医师根据病理结果将活检部位采图分别标记为:慢性萎缩性胃炎(CAG)和慢性非萎缩性胃炎(CNAG),再按照6大解剖部位细分为:倒镜胃体、胃底、胃窦、胃角、正镜胃体中上部、正镜胃体下部.评估指标包括对全部案例采图和分部位采图的识别灵敏度、特异度及准确度.同时,选取低中高年资各一名内镜医师进行人机对比,比较AI模型与内镜医师对CAG的识别能力.结果:共收集 200例患者共 2 248张清晰胃腔采图(CAG/CNAG,1 165/1 083)作为真实世界测试集.在该测试集上,AI模型识别灵敏度、特异度和准确率分别为92.27%(1 075/1 165)、88.73%(961/1 083)、90.57%(2 036/2 248).与三名不同年资的内镜医师相比,模型识别准确率与高年资医生水平相当,而显著优于中低年资医生,差异具有统计学意义.结论:本研究表明AI模型在临床应用中具有稳定的诊断能力,与高年资内镜医师水平相当,有望成为内镜医师的有效辅助工具.
Objective:To investigate the diagnostic accuracy of an artificial intelligence(AI)based chronic atrophic gastritis identification model in a real-world clinical environment.Methods:Patients undergo-ing gastroscopy at Wuhan Jiangxia District Hospital of Traditional Chinese Medicine from August 2022 to August 2023 were selected as a real-world test set to evaluate the generalization ability of the model.Endoscopists marked the biopsy sites according to the pathological results as chronic atrophic gastritis(CAG)and chronic non-atrophic gastritis(CNAG)and divided them into six anatomical re-gions:middle-upper body in retroflex view,fundus,antrum,angulus,middle-upper body in ante-grade view,lower body in antegrade view.The evaluation indicators included the recognition sensitivity,specificity,and accuracy of all cases and regional sampling.At the same time,three en-doscopists with different experience levels(low,medium,and high)were selected for a human-machine comparison,and the AI model's CAG identification ability was compared with that of endoscopists.Results:A total of 2 248 clear gastric cavity samples(CAG/CNAG,1 165/1 083)from 200 patients were collected as a real-world test set.On this test set,the AI model's recognition sensitivity,specificity,and accuracy were 92.27%(1 075/1 165),88.73%(961/1 083),and 90.57%(2 036/2 248),respectively.Compared with the results of three endoscopists with different experience levels,the identification accuracy of the AI model was equivalent to that of the senior en-doscopist and significantly better than that of the middle and junior endoscopists,with statistically sig-nificant differences.Conclusion:The AI model has stable diagnostic ability in clinical application and is equivalent to the level of senior endoscopists,which is expected to become an effective auxiliary tool for endoscopists.

Artificial IntelligenceChronic Atrophic GastritisGeneralization AbilityDiagnosis

夏梅青、郑翠、李娜、谢友利、胡孝、王德青

展开 >

武汉江夏区中医院消化内科 湖北 武汉 430200

武汉大学中南医院肝胆胰外科 湖北 武汉 430071

武汉楚精灵医疗科技有限公司 湖北 武汉 430070

人工智能(AI) 慢性萎缩性胃炎(CAG) 泛化能力 诊断

2024

武汉大学学报(医学版)
武汉大学

武汉大学学报(医学版)

CSTPCD
影响因子:0.959
ISSN:1671-8852
年,卷(期):2024.45(9)