首页|卵巢癌分子亚型及关键基因的识别和预后风险模型的构建及评价

卵巢癌分子亚型及关键基因的识别和预后风险模型的构建及评价

Identification of molecular subtypes and key genes in ovarian cancer and construction and evaluation of prognostic risk models

扫码查看
目的:识别卵巢癌的不同分子亚型并构建风险预测模型.方法:基于TCGA数据库的转录组数据,采用无监督聚类将卵巢癌分为三种亚型.GO/KEGG富集分析用于探讨不同亚型的生物过程差异.采用Cox比例风险模型和Lasso回归方法构建预后模型.受试者工作特征(ROC)曲线和Kaplan-Meier方法用来检测模型准确性.结果:本研究发现绝大多数免疫相关的预后不良基因在C1亚型表达较低,在C3亚型表达相反.其中C2亚型患者预后最好.三种卵巢癌分子亚型富集的生物学过程和通路存在明显差异,这为揭示三种不同亚型不同预后的机制提供了参考.GABRD被鉴定为卵巢癌发生发展的关键基因,与Treg、CAFs、TGFB相关,提示它可能通过抑制免疫和重塑肿瘤微环境发挥作用.另外,本研究构建了一个包括SIGLEC14、EREG、ATP2A3、INSC、NKAIN4、DACT1和RYR2等基因在内的预后模型,在训练集中,该预后模型的 3年和 5年OS的AUC值分别为 77%和86%.在测试集中也观察到类似的结果.结论:本研究识别和验证了一个新的卵巢癌预后模型,这可能有助于更好地理解卵巢癌预后并进行风险分层,从而做出更合理的治疗决策.
Objective:To identify different molecular subtypes of ovarian cancer and to construct a risk pre-diction model.Methods:Ovarian cancer was classified into three subtypes based on the transcriptomic data from the TCGA database.GO/KEGG enrichment analysis was used to explore biological pro-cess differences across different subtypes.The prognostic model was constructed using the Cox pro-portional hazards model and Lasso regression methods.The receiver operating characteristic(ROC)curves and the Kaplan-Meier method were used to detect model accuracy.Results:This study found that the vast majority of immune-related prognosis genes showed low expression in the C1 subtype and opposite expression in the C3.Among them,patients with the C2 subtype have the best progno-sis.Clear differences in the biological processes and pathways enriched by the three ovarian cancer mo-lecular subtypes provide references for revealing the mechanisms of different prognoses of the three dif-ferent subtypes.GABRD was identified as a key gene in the development of ovarian cancer associated with Treg,CAFs,and TGFB,suggesting that it may function by suppressing immunity and remodel-ing the tumor microenvironment.In addition,a prognostic model including SIGLEC14,EREG,ATP2A3,INSC,NKAIN4,DACT1,and RYR2 was constructed,where the AUC values for 3-and 5-year OS were 77%and 86%,respectively.Similar results were also observed in the test set.Conclusion:This study identified and validated a new prognostic model for ovarian cancer,which may help to better understand its prognosis and conduct risk stratification to make more rational treat-ment decisions.

Ovarian CancerMolecular SubtypePrognosisGABRD

何静子、穆其琛、付东阁

展开 >

延安大学体育学院 陕西 延安 716000

韩国又石大学 韩国 全罗北道 55338

卵巢癌 分子亚型 预后 GABRD

2024

武汉大学学报(医学版)
武汉大学

武汉大学学报(医学版)

CSTPCD
影响因子:0.959
ISSN:1671-8852
年,卷(期):2024.45(11)