首页|YOLOv5-LR:一种遥感影像旋转目标检测模型

YOLOv5-LR:一种遥感影像旋转目标检测模型

扫码查看
真实遥感图像中,目标呈现任意方向分布的特点,原始 YOLOv5 网络存在难以准确表达目标的位置和范围、以及检测速度一般的问题.针对上述问题,提出一种遥感影像旋转目标检测模型YOLOv5-Left-Rotation,首先利用Transformer自注意力机制,让模型更加注意感兴趣的目标,并且在图像预处理过程中采用 Mosaic 数据增强,对后处理过程使用改进后的非极大值抑制算法 Non-Maximum Suppression.其次,引入角度损失函数,增加网络的输出维度,得到旋转矩形的预测框.最后,在网络模型的浅层阶段,增加滑动窗口分支,来提高大尺寸遥感稀疏目标的检测效率.实验数据集为自制飞机数据集CASIA-plane78和公开的舰船数据集HRSC2016,结果表明,改进旋转目标检测算法相比于原始YOLOv5网络的平均精度提升了 3.175%,在吉林一号某星推扫出的大尺寸多光谱影像中推理速度提升了 13.6%,能够尽可能地减少冗余背景信息,更加准确检测出光学遥感图像中排列密集、分布无规律的感兴趣目标的区域.
YOLOv5-LR:A Rotating Object Detection Model for Remote Sensing Images
In a real remote sensing image,the target is distributed in any direction and it is difficult for the original YOLOv5 network to accurately express the location and range of the target and the detection speed is moderate.To solve these problems,a remote sensing image rotating target detection model,YOLOv5-Left-Rotation,was proposed.First,the transformer self-attention mechanism was used to make the model pay more attention to the targets of interest.In addition,Mosaic data were enhanced in the image preprocessing,and the improved Non-Maximum Suppression algorithm was used in post-processing.Second,an angle loss function was introduced to increase the output dimensions of the network,and the prediction box of the rotating rectangle was obtained.Finally,in the shallow stage of the network model,a sliding window branch was added to improve the detection efficiency of large-sized remote sensing sparse targets.The experimental datasets were the self-made aircraft dataset CASIA-plane78 and the public ship dataset HRSC2016.The results show that the average accuracy of the improved rotating target detection algorithm is improved by 3.175%compared with that of the original model,and the reasoning speed is improved by 13.6%in a large multispectral image swept by a Jilin-1 satellite.It can optimally reduce the redundant background information and more accurately detect the densely arranged and irregularly distributed areas of objects of interest in optical remote sensing images.

remote sensing imagessliding windowattention mechanismrotating object detectionYOLOv5

高明明、李沅洲、马雷、南敬昌、周芊邑

展开 >

辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105

中国科学院自动化研究所,北京 100190

辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105

遥感图像 滑动窗口 注意力机制 旋转目标检测 YOLOv5

国家自然科学基金青年科学基金辽宁省应用基础研究计划项目辽宁省应用基础研究计划项目北京市科技计划项目

617012112022JH2/10130027522-1083Z201100005820010

2024

红外技术
昆明物理研究所 中国兵工学会夜视技术专业委员会

红外技术

CSTPCD北大核心
影响因子:0.914
ISSN:1001-8891
年,卷(期):2024.46(1)
  • 2