首页|基于融合重构的电气设备红外图像EnFCM聚类分割方法

基于融合重构的电气设备红外图像EnFCM聚类分割方法

扫码查看
红外图像分割是电气设备红外故障诊断的关键环节,而电气设备的不均匀散热、较低的对比度与多源噪声的干扰,会导致目标区域过分割,严重影响分割精度.对此本文提出一种基于融合重构的EnFCM(Enhanced Fuzzy C-Means)聚类电气设备红外图像分割方法.首先对梯度图像进行自适应形态学重建操作,保证算法对噪声图像的分割能力;其次对图像进行显著性检测,将显著图与梯度图融合得到重构后的图像,凸显故障部位的特征,避免过分割;然后对重构后的图像进行分水岭分割获取超像素图像,最后对超像素图像直方图聚类得到分割结果.对电气设备红外图像的实验结果表明:本文算法在电气设备红外图像上能准确分割出故障区域,获取其位置与轮廓,有效改善了过分割现象,在选取的交并比与DICE系数指标对比中,本文方法对比选取的FRFCM、FCM、SFFCM、FCM_SICM、RSSFCA、AFCF平均提升了 81%与 79%;同时对噪声有较强的鲁棒性,在选取的分割准确率指标对比中,本文方法对比选取的FRFCM、FCM、SFFCM、FCM_SICM、RSSFCA、AFCF平均提升了 73%,取得了较优的分割效果.
EnFCM Clustering Segmentation Method for Infrared Image of Electrical Equipments Based on Fusion Reconstruction
Infrared image segmentation plays a pivotal role in diagnosing faults in electrical equipment using infrared imagery.However,uneven heat dissipation,lower contrast,and interference from multiple sources of noise in electrical equipment can lead to over-segmentation of the target region,seriously affecting segmentation accuracy.In this study,we propose an Enhanced Fuzzy C-Means(EnFCM)clustering method based on fusion reconstruction for infrared image segmentation of electrical equipment.First,the gradient image was subjected to an adaptive morphological reconstruction operation to ensure the segmentation ability of the algorithm on noisy images;second,the image was tested for saliency,and the reconstructed image was obtained by fusing the saliency map with the gradient map to highlight the features of the fault site and avoid over-segmentation;then,watershed segmentation was performed on the reconstructed image to obtain the super-pixel image;finally,the histogram clustering of the super-pixel image was obtained by segmentation.The experimental results on the infrared image of electrical equipment show that the algorithm in this paper can accurately segment the fault area on it,obtain its location and contour,and effectively improve the phenomenon of over-segmentation and in the comparison of the selected intersection and concatenation ratio and DICE coefficient indexes,this paper's method improves 81%and 79%on average compared to selected FRFCM,FCM,SFFCM,FCM_SICM,RSSFCA,and AFCF;meanwhile,it is extremely robust to noise,and in the comparison of selected segmentation accuracy indexes,this paper's method achieves segmentation results that are on average 73%superior compared to selected FRFCM,FCM,SFFCM,FCM_SICM,RSSFCA,and AFCF,thus,superior segmentation results were achieved.

infrared imageimage segmentationadaptive morphological reconstructionsaliency detectionEnFCM

刘沛津、张香瑞、魏平

展开 >

西安建筑科技大学 机电工程学院,陕西 西安 701055

国家电网有限公司西北分部,陕西 西安 710048

红外图像 图像分割 自适应形态学重建 显著性检测 EnFCM

国家自然科学基金陕西省重点研发计划

619032912022GY-134

2024

红外技术
昆明物理研究所 中国兵工学会夜视技术专业委员会

红外技术

CSTPCD北大核心
影响因子:0.914
ISSN:1001-8891
年,卷(期):2024.46(3)
  • 30