首页|面向真实场景的单帧红外图像超分辨率重建

面向真实场景的单帧红外图像超分辨率重建

扫码查看
现有的红外图像超分辨率重建方法主要依赖实验数据进行设计,但在面对真实环境中的复杂退化情况时,它们往往无法稳定地表现.针对这一挑战,本文提出了一种基于深度学习的新颖方法,专门针对真实场景下的红外图像超分辨率重建,构建了一个模拟真实场景下红外图像退化的模型,并提出了一个融合通道注意力与密集连接的网络结构.该结构旨在增强特征提取和图像重建能力,从而有效地提升真实场景下低分辨率红外图像的空间分辨率.通过一系列消融实验和与现有超分辨率方法的对比实验,本文方法展现了其在真实场景下红外图像处理中的有效性和优越性.实验结果显示,本文方法能够生成更锐利的边缘,并有效地消除噪声和模糊,从而显著提高图像的视觉质量.
Single-frame Infrared Image Super-Resolution Reconstruction for Real Scenes
Current infrared image super-resolution reconstruction methods,which are primarily designed based on experimental data,often fail in complex degradation scenarios encountered in real-world environments.To address this challenge,this paper presents a novel deep learning-based approach tailored for the super-resolution reconstruction of infrared images in real scenarios.The significant contributions of this research include the development of a model that simulates infrared image degradation in real-life settings and a network structure that integrates channel attention with dense connections.This structure enhances feature extraction and image reconstruction capabilities,effectively increasing the spatial resolution of low-resolution infrared images in realistic scenarios.The effectiveness and superiority of the proposed approach for processing infrared images in real-world contexts are demonstrated through a series of ablation studies and comparative experiments with existing super-resolution methods.The experimental results indicate that this method produces sharper edges and effectively eliminates noise and blur,thereby significantly improving the visual quality of the images.

infrared imagedeep learningsuper-resolutionreal scenedegradation model

师奕峰、陈楠、朱芳、毛文彪、李发明、王添福、张济清、姚立斌

展开 >

昆明物理研究所,云南 昆明 650223

红外图像 深度学习 超分辨 真实场景 退化模型

2024

红外技术
昆明物理研究所 中国兵工学会夜视技术专业委员会

红外技术

CSTPCD北大核心
影响因子:0.914
ISSN:1001-8891
年,卷(期):2024.46(4)
  • 27