首页|连续光纤激光切割金属薄壁材料工艺研究

连续光纤激光切割金属薄壁材料工艺研究

扫码查看
随着工业领域金属薄壁构件设计的多样化,在高速激光切割的同时,对切口形貌质量也提出了更高的要求.本研究采用连续光纤激光器对 0.2 mm厚度 304 不锈钢薄板进行切割实验,研究了毛刺和熔渣飞溅区产生的机理,重点讨论了加工工艺参数中的激光功率、切割速度、离焦量对毛刺堆积量和熔渣飞溅区宽度的影响关系,通过实验分析获得了最佳加工参数组合.研究结果表明,毛刺厚度随着激光功率、离焦量的增大而增加,随着切割速度的增大先降低后增加.熔渣飞溅区宽度随着激光功率的增大而增加,随着切割速度的增大而降低,随着离焦量的增大出现小范围波动.根据加工结果分析,当激光功率为 125 W,切割速度为 10 m/min,辅助气体压强为 1.2 MPa,离焦量为-0.3~-0.5 mm,可以获得0.2 mm厚304 不锈钢薄板较好的加工效果.
Technics of continuous-wave fiber laser cutting of thin-wall metal materials
Objective Thin-wall components exhibit characteristics such as lightweight,high strength to weight ratio,excellent heat dissipation,and good vibration and acoustic performance.In the aerospace industry,a growing demand for thin-wall components is observed,making precision laser cutting of thin-wall metal components a hot research topic for scholars at home and abroad.With the diversification of design for thin-wall metal components in the industrial sector,there are higher requirements for the quality of cut surfaces,even during high speed laser cutting.Laser cutting quality can be affected by many factors,but there have been limited studies on the comprehensive and interrelated effects of process parameters such as defocus amount,cutting speed,and laser power on burr thickness and slag splash zone width,particularly for ultrathin metal materials.Therefore,this study conducted laser cutting experiments on 0.2 mm thick 304 stainless steel sheets to analyze the mechanisms behind burr and slag splash formation.By adjusting process parameters such as cutting speed,laser power,and defocus amount,the study systematically summarized the variations in burr thickness and slag splash zone width for laser cutting of 304 stainless steel workpieces.Through process optimization,the study aimed at identifying the best combination of processing parameters.Methods A single factor experimental approach(Tab.1)was employed in this article to investigate the effects of power and defocus distance at different laser velocities on the thickness of burrs and the width of the slag splash zone.The applicable parameter ranges for laser cutting of thin-wall components were summarized.Optimal parameters for laser cutting were identified through comparative experiments(Tab.2).The clamping method for stainless steel thin plates was optimized,and the hypothesis is validated using experimental results(Fig.12).Results and Discussions Variation patterns of burr thickness(Fig.1,Fig.3)and slag splash zone width(Fig.5,Fig.7)at different cutting speeds,powers,and defocus amounts were summarized using single factor experimental methods.An analysis and optimization of the cutting technique for stainless steel thin plates was conducted,resulting in the identification of the optimal combination of processing parameters.Additionally,the best clamping methods for thin-wall metal components were determined,considering various processing conditions and shapes.Conclusions The burr thickness increases with an increase in laser power,decreases initially,and then increases with an increase in cutting speed.It also gradually increases with an increase in the focus position.The width of the slag splash zone increases with higher laser power,decreases as cutting speed increases,and exhibits minor fluctuations with an increase in the focus position.A comparison was conducted to assess the impact of different clamping methods on laser cutting results,leading to the determination of laser processing clamping methods for thin-wall metal parts.When the required workpiece shape is relatively simple,and precision requirements are not high,pneumatic clamping can be employed for processing.However,for more complex shapes with smaller sizes and higher precision requirements,supporting type is necessary.Based on the analysis of processing results,better processing results can be achieved for 0.2 mm thick 304 stainless steel sheets when the laser power is set to 125 W,the cutting speed is 10 m/min,the auxiliary gas pressure is 1.2 MPa,and the focus position ranges between-0.3 mm and-0.5 mm.

laser cuttingthin wall304 stainless steelburrslag splash zone

翟兆阳、李欣欣、张延超、刘忠明、杜春华、张华明

展开 >

西安理工大学机械与精密仪器工程学院,陕西西安 710048

郑州机械研究所有限公司,河南郑州 450052

广东工业大学省部共建精密电子制造技术与装备国家重点实验室,广东广州 510006

激光切割 薄壁 304不锈钢 毛刺 熔渣飞溅区

国家自然科学基金项目国家自然科学基金项目陕西省重点研发计划项目中国博士后科学基金项目省部共建精密电子制造技术与装备国家重点实验室开放课题项目

51905425520754362024GX-YBXM-2162023M743246JMDZ2021001

2024

红外与激光工程
中国航天科工集团公司第三研究院第八三五八研究所

红外与激光工程

CSTPCD北大核心
影响因子:0.754
ISSN:1007-2276
年,卷(期):2024.53(2)
  • 18