首页|高分子除湿转轮建模与除湿性能预测

高分子除湿转轮建模与除湿性能预测

扫码查看
为有效预测高分子除湿转轮的除湿性能,采用效率法模型、BP神经网络模型2种方式对基于高分子除湿转轮实验台的47组实验数据进行建模.通过构建的除湿转轮模型,对20组不同实验工况条件下的转轮除湿性能进行预测,并与实验数据进行对比.根据预测结果得出,2种模型均能对用于建模的47组实验数据进行有效回归,且能对非建模实验数据以外的20组实验工况进行较好的预测.效率法模型对于处理空气出口温度的预测精度优于BP神经网络模型,但对于处理空气出口含湿量的预测,BP神经网络模型的预测精度优于效率法模型.选择广州、上海、武汉、北京4个典型气候条件城市,使用所建模型研究其在不同气候分区下供冷季的除湿性能,结果表明高分子除湿转轮在这4个城市中的除湿性能由高到低依次为广州、上海、武汉、北京.
Modeling and dehumidification capacity prediction of polymer desiccant wheels
To effectively predict the dehumidification performance of a PDW(polymer desiccant wheel),two methods including the effectiveness method model and the BP neural network model were employed.The model of the PDW was constructed with experimental data from 47 different cases and was compared with data from additional 20 scenarios.The results illustrate that both models can effectively regress the 47 sets of experimental data and the error between predicted data and experimental data from the additional 20 sets is minimal.Furthermore,the effectiveness method model exhibits higher accuracy in predicting the air outlet temperature,while the BP neural network model performs better in predicting the air outlet humidity.Additionally,Guangzhou,Shanghai,Wuhan,and Beijing were selected to investigate the dehumidification capacity of the PDW operating during the cooling season in different climate zones.The results reveal that the PDW achieves its highest performance in Guangzhou,followed by Shanghai,Wuhan,and lastly Beijing.

desiccant wheelmodeling methodseffectiveness methodBP neural networkperformance prediction

张雪梅、张慧、黄永年、钱崝、刘全

展开 >

同济大学机械与能源工程学院,上海 201804

东洋桑工业科技(上海)有限公司,上海 201600

除湿转轮 建模方法 效率法 BP神经网络 性能预测

国家自然科学基金资助项目

52178085

2024

化学工程
华陆工程科技有限责任公司

化学工程

CSTPCD北大核心
影响因子:0.438
ISSN:1005-9954
年,卷(期):2024.52(1)
  • 3