首页|电磁感应加热装置中磁-热-流耦合特性分析

电磁感应加热装置中磁-热-流耦合特性分析

扫码查看
采用磁热流多元物理场耦合仿真的方法,研究感应加热系统中的不同线圈结构、激励条件下壁面欧姆损失、温度特征值、磁场强度等多物理场相关的特征值,由结果可知:线圈结构以及激励条件会对磁场及温度场产生不同程度的影响,壁面的欧姆损失与电流幅值、电流频率、线圈匝数呈正相关,与线圈与管道中心的距离呈负相关;随着电流幅值从100 A升高至180 A,壁面加热功率从167 W提升至3 223 W,出口平均温度从20.5℃提升至28.6 ℃;管壁内的电流密度以及磁通密度会随着线圈内电流频率的增加而更加集中于管壁薄层内;随着线圈频率从0.05 kHz提升至20 kHz,不锈钢表层内的最大电流密度将从1.29 ×106 A/m2升高至1.25 ×108 A/m2;当电流频率为0.05 kHz时,最大磁通密度为0.5 T;当电流频率为20 kHz时,最大磁通密度为4.8 T.
Analysis of magnetic-thermal-fluid coupling characteristics in electromagnetic induction heating devices
The method of multivariate coupling field simulation of magnetocaloric in flow was adopted to studied multiphysics related eigenvalues in the induction heating system such as different coil structures,driving conditions influence wall ohmic losses,temperature eigenvalues,and magnetic field strength.The results indicate that coil structure and driving conditions have various degrees of influence on the magnetic field and temperature field.The wall ohmic losses are positively correlated with current amplitude,current frequency,and coil turns,and negatively correlated with the distance between the coil and the pipeline center.As the current amplitude increases from 100 A to 180 A,the heating power increases from 167 W to 3 223 W,and the average outlet temperature increases from 20.5 ℃ to 28.6 ℃.The current density and magnetic flux density in the pipe wall are more concentrated in the thin layer of the pipe wall with the current frequency increasing in the coil,and the maximum current density in the stainless steel surface increases from 1.29 × 106 A/m2 to 1.25 × 108 A/m2 with the coil frequency increasing from 0.05 kHz to 20 kHz.When the current frequency is 0.05 kHz,the maximum magnetic flux density is 0.5 T,and when the current frequency is 20 kHz,the maximum magnetic flux density is 4.8 T.

induction heatingmultivariate coupling fieldohmic losssolenoid coildriving condition

巫颖龙、王继强、王家瑞、翟德伟、王斯民

展开 >

西安交通大学化学工程与技术学院,陕西西安 710049

长庆工程设计有限公司,陕西西安 710003

浙江医药股份有限公司 昌海生物分公司,浙江绍兴 312000

感应加热 多元耦合场 欧姆损失 电磁线圈 激励条件

国家自然科学基金资助项目陕西省自然科学基础研究项目

223082732023-JC-QN-0503

2024

化学工程
华陆工程科技有限责任公司

化学工程

CSTPCD北大核心
影响因子:0.438
ISSN:1005-9954
年,卷(期):2024.52(10)