首页|机器学习辅助燃料分子设计

机器学习辅助燃料分子设计

扫码查看
燃料的理论设计一直是推进技术领域的研究重点,可以有效避免复杂的实验和潜在的危险,指导燃料合成并与实验结果相互验证,对新一代燃料开发至关重要.然而,基团贡献法和量子化学方法等传统的计算方法存在准确性差和效率低的缺陷.机器学习的快速发展,为设计和开发潜在高能燃料开辟了新的途径,在性质预测和分子设计两个关键环节均展现了强大的能力.本综述首先介绍了几种用于机器学习的燃料分子描述方式,分别对用于燃料性质预测和分子设计的不同机器学习模型进行简要介绍.进一步对机器学习辅助燃料性质预测和新型燃料分子设计的研究现状进行了归纳总结.最后,探讨了机器学习在燃料应用领域所面临的挑战及后续发展方向.
Machine Learning Assisted Molecule Design of Fuel
Theoretical design of fuel has always been the focus of research about fuel in the area of propulsion technology.It can effectively overcome the complexity and potential danger of the experiment,and guide experimental synthesis of fuel,which can be verified by experimental results.It is anticipated that a new generation of fuel can be efficiently designed for subsequent fuel synthesis and application.However,the traditional theoretical calculation methods,such as group contribution method and quantum chemical method,have the defects of low accuracy and efficiency.Machine learning,a rapidly developed algorithm,has opened up a new way to design potential high-energy fuels,which exhibits strong capabilities in both property prediction and molecule design.In this review,several fuel molecule descriptors for machine learning are introduced,and different machine learning models for fuel property prediction and molecule design are briefed.Furthermore,the research on machine learning assisted property prediction and new molecule design of fuel is summarized,respectively.Finally,the challenges and future development of machine learning applied in fuel design are discussed.

fuelmachine learningmolecule descriptionproperty predictionmolecule designhigh-throughput screening

张香文、侯放、刘睿宸、王莅、李国柱

展开 >

天津大学化工学院 天津 300072

先进燃料与化学推进剂教育部重点实验室 天津 300072

物质绿色创造与制造海河实验室 天津 300192

燃料 机器学习 分子描述 性质预测 分子设计 高通量筛选

国家自然科学基金

22178248

2024

化学进展
中国科学院基础科学局,化学部,文献情报中心 国家自然科学基金委员会化学科学部

化学进展

CSTPCD北大核心
影响因子:1.079
ISSN:1005-281X
年,卷(期):2024.36(4)