首页|光催化固氮催化剂性能提升策略分析

光催化固氮催化剂性能提升策略分析

扫码查看
光催化固氮以太阳能作驱动力,常温常压下利用N2和H2O直接产生NH3,工艺零碳排放,是极具前景的人工固氮方式之一,近年来受到研究者们的广泛关注。受限于N2难活化、光生载流子利用率低及太阳光利用率低等因素制约,产氨效率依然不高,因此提升产氨效率是光催化固氮领域的研究重点。从N2吸附活化、载流子分离与迁移、表面反应三个重要过程出发,通过对催化剂进行合理改性,在温和条件下促进N2的活化和转化,并高效产生NH3是极具前景的。因此本文主要从光催化剂改性方面进行研究,从N2分子吸附和活化能力、光生电子的转移能力和光利用等性能提升方面对产氨效率的影响进行概述,对近几年在此方面的研究进行分析,最后对光催化固氮催化剂的改性策略进行总结。
Performance Improvement Strategy of Photocatalytic Ammonia Synthesis Catalyst
Photocatalytic nitrogen fixation is driven by solar energy.N2 and H2O are used to directly produce NH3 at normal temperature and pressure,and the process has zero carbon emissions.It is one of the most promising artificial nitrogen fixation methods and has attracted wide attention from researchers in recent years.Limited by the difficult activation of N2,low utilization rate of photogenerated carrier and low utilization rate of sunlight,the ammonia production efficiency is still not high,so improving the ammonia production efficiency is the focus of research in the field of photocatalytic ammonia synthesis.Starting from the three important processes of N2 adsorption activation,carrier separation and migration,and surface reaction,it is very promising to promote the activation and conversion of N2 under mild conditions and produce NH3 efficiently by reasonable modification of the catalyst.This paper mainly studied the modification of photocatalysts,summarized the influence of N2 molecular adsorption and activation ability,photogenerated electron transfer ability and light utilization on the ammonia production efficiency,analyzed the research in recent years in these fields,and finally summarized the modification strategy of photocatalytic ammonia synthesis catalyst.

photocatalytic synthesis of ammoniaphotocatalystactive sitephotogenic electron transfer abilitymorphology control

郭丽君、杨红、邵圣娟、刘音圻、刘建新

展开 >

太原工业学院化学与化工系 太原 030008

太原理工大学化学工程与技术学院 太原 030024

光催化固氮 光催化剂 活性位点 光生电子转移能力 形貌调控

国家自然科学基金山西省基础研究计划资助项目山西省高等学校科技创新计划项目太原工业学院引进人才科研资助项目

219781872022030212210582022L5352024KJ013

2024

化学进展
中国科学院基础科学局,化学部,文献情报中心 国家自然科学基金委员会化学科学部

化学进展

CSTPCD北大核心
影响因子:1.079
ISSN:1005-281X
年,卷(期):2024.36(6)