Crystal Material Construction Based on DNA Nanotechnology
Nanocrystal materials have exhibited unique and superior properties in the fields of electronics,optics,and magnetism.The fabrication of nanocrystal materials holds significant importance in the material science for achieving breakthroughs and further developments in their performance.DNA,known for its complementary base pairing characteristics,offers the potential to construct diverse nanostructures and crystals of which the structures and composition can be precisely controlled,thereby enabling the tailored material properties.Currently,the nanocrystal materials fabricated through DNA nanotechnology has been applied in various fields,including catalysts,optical devices,and semiconductor materials.These advancements signify a progressive realization of the fundamental objective for constructing three-dimensional crystals as versatile,periodic molecular frameworks.In this review,we provide a systematic elucidation of the development and recent advancements in the research pertaining to three pivotal techniques employed in the construction of DNA nanocrystals.These techniques include DNA tiles,programmable atomic equivalents,and DNA origami.Moreover,we briefly deliberate on the future direction of utilizing DNA nanotechnology in the construction of nanocrystal materials.
DNA nanotechnologyprogrammable atomic equivalentsDNA origamiself-assembly