首页|过渡金属化合物表界面调控对超级电容的增强机制

过渡金属化合物表界面调控对超级电容的增强机制

扫码查看
开发效率高、稳定性好的超级电容器对于缓解能源危机和环境污染问题具有重要意义。过渡金属化合物通过法拉第氧化还原反应存储电荷,具有更高的比容量。然而,其面临导电性差、反应动力学缓慢和暴露的电活性位点少等问题,在实践应用中存在一定的困难。本文针对过渡金属化合物存在的问题,总结了形貌调控、异质结构、元素掺杂、空位工程等表界面调控策略在提升超级电容器电化学性能方面的研究进展。重点从几何结构和电子结构调控角度探讨上述方法对活性材料物理和化学性质的作用机理,进一步揭示超级电容器性能的增强机制,为研制高性能、高稳定性超级电容器提供理论基础。最后,总结结构设计和电子调控提高超级电容器性能的原因,展望了结构设计和电子调控在构筑高性能超级电容器方面面临的挑战。
Enhanced Mechanism of Supercapacitance by Regulating the Surface Interface of Transition Metal Compounds
The development of supercapacitors with high efficiency and good stability is of great significance in alleviating the energy crisis and environmental pollution issues.Transition metal compounds store charge through Faraday redox reactions,leading to higher specific capacities.However,transition metal compounds suffer from poor electrical conductivity,slow reaction kinetics,and few exposed electroactive sites,thus leading to a definite difficulty in practical applications.In this paper,we have summarized the research progress of surface-interface modulation strategies in enhancing the electrochemical performance of supercapacitors to address the problems of transition metal compounds,such as morphology modulation,heterojunction,elemental doping,and vacancy engineering.This paper focuses on the mechanism of the above-mentioned methods from the perspective of morphological and electronic structure modulation on the physical and chemical properties of active materials.We aim to clarify the performance enhancement mechanism of supercapacitors and provide an important theoretical basis for developing high-performance and high-stability supercapacitors.Finally,the reasons for structural design and electronic modulation to improve the performance of supercapacitors are summarized,and the challenges faced by structural design and electronic modulation in constructing high-performance supercapacitors are outlined.

surface interfacesupercapacitanceelectronic structuremorphologymechanism

陈星、蒋德敏、谢昆、刘丽君、王堙、王育乔

展开 >

重庆三峡学院环境与化学工程学院 重庆 404100

东南大学化学化工学院纳米光电化学与器件研究中心 南京 211189

北京理工大学重庆创新中心 重庆 401120

表界面 超级电容 电子结构 形貌 机制

国家自然科学基金项目重庆市教育委员会科学技术研究项目重庆市教育委员会科学技术研究项目重庆市自然科学基金项目重庆市万州区科技计划国家级大学生创新创业训练计划国家级大学生创新创业训练计划

61774033KJZD-K202201206KJQN202101238cstc2021jcyjmsxmX1016wzstc20220302202310643004202310643009

2024

化学进展
中国科学院基础科学局,化学部,文献情报中心 国家自然科学基金委员会化学科学部

化学进展

CSTPCD北大核心
影响因子:1.079
ISSN:1005-281X
年,卷(期):2024.36(7)