首页|考虑碳排放的多智能体冷链物流路径优化

考虑碳排放的多智能体冷链物流路径优化

扫码查看
针对冷链物流的路径优化问题,使用多智能体的建模思想和相关理论,在考虑碳排放以及软时间窗的情况下,结合固定成本、运输费用和货损费用,构建物流配送总成本最小化的冷链物流配送模型,并改进蚁群算法对模型求解。先制定蚂蚁状态转移规则,再更新信息素,并对最优路径加入额外的信息素量,找到全局最优解的蚂蚁;然后在算法中插入变邻域局部搜索操作,让算法跳出局部最优。最后再进行算例分析对比,结果发现在物流配送总成本上,改进的蚁群算法相比传统的蚁群算法节约了 8。39%,这也验证了算法和模型的有效性与实用性。
Multi-Agent Cold Chain Logistics Routing Optimization Considering Carbon Emission
In addressing the optimization problem of cold chain logistics paths,the modeling approach and rele-vant theories of multi-agent systems are employed.Considering carbon emissions and soft time windows,along with fixed costs,transportation expenses,and cargo loss costs,a cold chain logistics distribution model is constructed to minimize the total logistics distribution cost.Furthermore,enhancements are made to the ant colony algorithm for sol-ving the model..The ant colony algorithm is improved to solve the model.Firstly,formulate ant state transition rules,update pheromones,and add additional pheromone quantities to the optimal path to find the globally optimal ant;Then,a variable neighborhood local search operation is inserted into the algorithm,causing the algorithm to jump out of the local optimum.Finally,an example analysis and comparison were conducted,and it was found that the improved ant colony algorithm in this paper saved 8.39%compared to the traditional ant colony algorithm in terms of total logistics delivery costs.This also verifies the effectiveness and practicality of the algorithm and model.

cold chain logisticspath optimizationmulti-agentcarbon emissionsimproved ant colony algo-rithm

程元栋、韩佰庆、郑贺、汪建伟

展开 >

安徽理工大学经济与管理学院,安徽 淮南 232001

冷链物流 路径优化 多智能体 碳排放 改进的蚁群算法

国家自然科学基金安徽省哲学社会科学规划项目安徽省教育厅人文社会科学研究重点项目

71473001AHSKY2017D35SK2020A0212

2024

黄河科技学院学报

黄河科技学院学报

ISSN:
年,卷(期):2024.26(5)