首页|(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)陶瓷的介电以及储能性能研究

(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)陶瓷的介电以及储能性能研究

扫码查看
采用常规固相法制备(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)[NN-x(BNT-BF)](x=0.05,0.1,0.15,0.2)陶瓷,并对其物相组成、微观形貌、介电与储能特性进行系统研究.结果表明,随着BNT-BF含量的增加,NN-x(BNT-BF)陶瓷逐渐由正交反铁电P相和R相共存(x<0.1)转变为单一反铁电R相(x≥0.1),弛豫行为增强.BNT-BF掺杂显著改善了陶瓷的致密度,且陶瓷的平均晶粒尺寸随着掺杂量增大先减小后增大.同时取代NaNbO3的A位和B位可破坏NN原有的铁电长程有序结构,优化陶瓷的储能性能.在410 kV/cm的击穿场强(Eb)下,NN-0.2(BNT-BF)陶瓷的有效储能密度(Wrec)和储能效率(η)分别为2.54 J/cm3和89.24%,且在20~120 ℃的温度范围内具有高的温度稳定性.同时,高功率密度(PD=49 MW/cm3)、大电流密度(CD=406 A/cm2)和超快放电速度(t0.9=35 ns)使得NN-0.2(BNT-BF)陶瓷在脉冲功率系统中具有潜在的应用前景.
Dielectric and Energy Storage Properties of(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)Ceramics
Sodium niobate(NaNbO3)ceramic,as a representative of antiferroelectric materials,has been widely studied in the field of energy storage due to its environmental friendliness and non-toxicity.However,its application is greatly limited due to its square hysteresis loop,which leads to low recoverable energy storage density(Wrec).Introducing a second compo-nent into NaNbO3 to form a solid solution can enhance its energy storage properties.According to this train of thoughts,(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)[NN-x(BNT-BF)](x=0.05,0.1,0.15,0.2)ceramics were designed through substituting the A-and B-sites of NaNbO3 with Bi3+,Fe3+,and Ti4+simultaneously in this work.The NN-x(BNT-BF)ceram-ics were prepared by the conventional solid-state reaction method,and their phase compositions,microstructures,dielectric and energy storage properties were systematically investigated by X-ray diffraction(XRD),Raman spectrum,scanning elec-tron microscopy(SEM),dielectric property measurement and ferroelectric test.The results showed that with the increase of BNT-BF content,the phase composition of the NN-x(BNT-BF)ceramics gradually transformed from coexistence of orthogo-nal antiferroelectric P and R phases(x<0.1)to single antiferroelectric R phase(x≥0.1),and the relaxation behavior was significantly enhanced.The densification of the NN-x(BNT-BF)ceramics was remarkably improved.With the increase of BNT-BF content,the average grain size of the NN-x(BNT-BF)ceramics was firstly declined and then increased.Moreover,replacing the A-and B-sites of NaNbO3 by Bi3+,Fe3+,and Ti4+simultaneously could disrupt its original long-range antiferro-electric ordered structure,thus optimizing energy storage performances of the ceramics.At a high breakdown field strength(Eb)of 410 kV/cm,the NN-0.2(BNT-BF)ceramic achieved Wree of 2.54 J/cm3,and energy storage efficiency(η)of 89.24%.In addition,the NN-0.2(BNT-BF)ceramic exhibited a high temperature stability in the temperature range of 20~120 ℃.Meanwhile,large power density(PD=49 MW/cm3),high current density(CD=406 A/cm2),and ultrafast discharge rate(t0.9=35 ns)made the NN-0.2(BNT-BF)ceramic have potential applications in pulse power systems.

sodium niobatedielectric propertyenergy storage propertytemperature stabilitycharge-discharge property

郭云凤、王俊贤、王泽星、李家茂、刘畅

展开 >

安徽工业大学 材料科学与工程学院先进陶瓷研究中心 马鞍山 243032

铌酸钠 介电性能 储能性能 温度稳定性 充放电性能

安徽高校自然科学研究项目

KJ2019A0054

2024

化学学报
中国化学会 中国科学院上海有机化学研究所

化学学报

CSTPCD北大核心
影响因子:1.401
ISSN:0567-7351
年,卷(期):2024.82(5)