首页|基于强化学习的锚泊辅助动力定位系统定位点选取方法

基于强化学习的锚泊辅助动力定位系统定位点选取方法

扫码查看
海上作业中,适当的定位点可以显著降低锚泊辅助动力定位(PM)系统的能耗.为了找到能效最优的定位点,使得锚泊系统能够补偿主要的环境载荷而推进器只需抑制海洋结构物的摇荡运动,提出了一种基于模型的强化学习(RL)方法进行最优定位点的决策.该方法通过直接和间接学习更新Q函数,并且通过支持向量回归来近似环境模型的奖励函数.仿真结果表明,该方法能够在未知和随机环境中通过持续的规划、执行和学习成功地确定最优定位点,且可以有效加快决策代理的学习速度.
A setpoint selection method for a thruster-assisted position mooring system based on reinforcement learning
Appropriate setpoints for the thruster-assisted position mooring(PM)systems can significantly reduce energy consumption of the thrusters in offshore operations.To identify the most energy-efficient mooring points,which allow the mooring system to compensate for the major environmental loads while the thrusters only need to mitigate the oscillatory motion of marine structures,a model-based reinforcement learning approach for the optimal positioning decision-making is proposed.This method updates the Q-function through both direct and indirect learning,and approximates the reward function of the environmental model using support vector regression.Simulation results indicate that this approach can successfully determine the optimal setpoints in unknown and random environments through continuous planning,execution,and learning,and can effectively accelerate the learning pace of the decision-making agent.

thruster-assisted position mooring(PM)systemssetpoint optimizationreinforcement learningmodel-basednavigation control

蒋旭、王磊、王一听

展开 >

上海交通大学 海洋工程全国重点实验室,上海 200240

锚泊辅助动力定位系统 定位点优化 强化学习 基于模型 导航控制

2024

海洋工程
中国海洋学会

海洋工程

CSTPCD北大核心
影响因子:0.552
ISSN:1005-9865
年,卷(期):2024.42(6)