首页|预测有效波高的深度学习模型研究

预测有效波高的深度学习模型研究

扫码查看
研究基于RNN、LSTM、GRU深度学习模型,针对NOAA浮标数据集中的44013、44014、44017浮标的数据,通过斯皮尔曼相关性分析提高模型预测效果.实验结果表明,在进行相关性分析后,S-RNN、S-LSTM、S-GRU的预测效果均比原始RNN、LSTM、GRU模型预测效果好.此外,提出一种基于LSTM的LSTM-Attention波高预测模型,并进行相关实验,量化LSTM-Attention模型的预测效果,实验结果表明LSTM-Attention模型有更好的预测效果.为评估模型的泛化能力,研究还提出了一种采用邻近浮标数据进行学习,预测浮标缺失数据的方法.实验结果表明,该方法的预测精度可以达到97.93%.本研究为海浪预测提供了新的方法和思路,也为未来深度学习模型在海浪预测中的应用提供了参考.
Research on deep learning models for predicting significant wave height
Based on deep learning models RNN,LSTM,and GRU,this study aims to improve the predictive performance of the model for 44013,44014,and 44017 buoys in the NOAA buoy dataset through Spearman correlation analysis.The experimental results show that after conducting correlation analysis,the prediction performance of S-RNN,S-LSTM,and S-GRU models is better than that of the original RNN,LSTM,and GRU models.In addition,an LSTM Attention wave height prediction model based on LSTM was proposed and relevant experiments were conducted to quantify the predictive performance of the LSTM Attention model.The experimental results showed that the LSTM Attention model had better predictive performance.To evaluate the generalization ability of the model,a learning method using neighboring buoy data was proposed to predict missing data buoys.The experimental results show that the prediction accuracy of this method can reach 97.93%.This study provides new methods and ideas for wave prediction,and also provides reference for the application of deep learning models in wave prediction in the future.

deep learningsea wavesignificant wave heightLSTM-Attention

秦易凡、罗锋、张杰、汪忆、张义丰

展开 >

河海大学 港口海岸与近海工程学院,江苏 南京 210098

南通河海大学海洋与近海工程研究院,江苏 南通 226000

河海大学海岸灾害及防护教育部重点实验室,江苏 南京 210098

深度学习 海浪 有效波高 LSTM-Attention

江苏省海洋科技创新项目江苏省海洋科技创新项目南通社会民生科技计划项目南通社会民生科技计划项目南通社会民生科技计划项目

JSZRHYKJ202105JSZRHYKJ202303MS12022009MS22022082MS22022083

2024

海洋通报
国家海洋信息中心 国家海洋局北海分局 国家海洋局东海分局 国家海洋局南海分局

海洋通报

CSTPCD北大核心
影响因子:1.07
ISSN:1001-6392
年,卷(期):2024.43(3)
  • 21