首页|基于多尺度深度学习对南海海表温度预报的研究

基于多尺度深度学习对南海海表温度预报的研究

扫码查看
海表温度是海洋最重要的物理量之一,提供了气候系统的基本信息,准确地预报海表温度有着广泛而重要的应用.近年来,基于人工智能的海温预报方法开始流行,并展现出巨大的潜力.基于卷积长短时记忆神经网络(ConvLSTM),本文研究了多尺度输入场对南海北部二维海表温度预报结果的影响.文章采用多元集合经验模态分解方法(MEEMD)将日均海表温度分解成多个尺度的空间主模态,并以不同的组合训练ConvLSTM模型进行预报实验.结果表明,采用前4个海表温度主模态数据训练模型时,预报1~7d海表温度的均方根误差约为0.4~0.8℃,比仅用原始海表温度训练时减小了 0.2~1.2℃;平均绝对百分比误差为1%~6%,减小了 0.5%~10%;空间相关系数为99.5%~96.5%,提高了 0.5%~3.5%.而且,随机实验也进一步证明该方法具有较高的普适性.基于深度学习的预报模型,需结合海温的物理特性,选择合适的数据进行训练,才能进一步提高其预报精度.本文初步探究了人工智能方法与物理概念在海温预报中的融合,可为以后的研究提供一定的参考.
Forecast of sea surface temperature in the South China Sea based on multi-scale deep learning model
Sea surface temperature(SST)is one of the most important physical variables of the ocean,which provides the basic information of the climate system.Accurately SST forecasting system has a comprehensive and essential application.In recent years,AI-based SST forecasting methods have become popular and shown great po-tential.Based on the convolutional long and short-term memory neural network(ConvLSTM),this paper studies the influence of multi-scale input fields on SST prediction in the northern South China Sea.Multi-dimensional en-semble empirical mode decomposition method(MEEMD)is used to decompose the average daily SST into the spa-tial eigenmodes of differentiated scales.Input different combinations of eigenmodes into ConvLSTM for training and prediction experiments.Results show that when using all four SST eigenmodes,the RMSE of the predicted SST in 1-7 days is 0.4-0.8℃,decrease 0.2-1.2℃ compared with the original SST alone;the MAPE is 1%-6%,de-crease 0.5%-10%;the spatial correlation coefficient is 99.5%-96.5%,improve 0.5%-3.5%.Moreover,the random-ized experiments also further proved the method has a high universality.The prediction model based on deep learn-ing needs to select the appropriate training data in order to further improve its prediction accuracy.This paper pre-liminarily explores the integration of artificial intelligence methods and physical concepts in SST prediction,which can provide some reference for future research.

SST predictiondeep learningConvLSTMMEEMD

张宇、许大志、俞胜宾、邢会斌、管玉平

展开 >

自然资源部南海预报减灾中心,广东广州,510310

自然资源部海洋环境探测技术与应用重点实验室,广东广州 510310

南方海洋科学与工程广东省实验室(珠海),广东珠海,519000

中国科学院南海海洋研究所热带海洋环境国家重点实验室,广东广州 510301

中国科学院大学海洋学院,北京 100049

展开 >

海温预报 深度学习 ConvLSTM MEEMD

2024

海洋学报(中文版)
中国海洋学会

海洋学报(中文版)

CSTPCD北大核心
影响因子:1.044
ISSN:0253-4193
年,卷(期):2024.46(5)