首页|构建准实时海面风场的一种智能算法

构建准实时海面风场的一种智能算法

扫码查看
本文基于深度学习U-Net网络构建了CMA-GFS数值模式风场订正模型,并以此订正模型订正后的风场为背景场(CMA-GFS_Unet),以HY-2B/2C/2D以及MetOp-B 4颗卫星的散射计海面风资料为观测资料,采用插补法快速完成准实时海面风场的构建.此智能算法可实现滞后 3 h准实时生成空间分辨率为 0.25°、时间分辨率为 6 h的全球海面融合风场(Fusion_QRT).分别使用CCMP融合风场数据和中国近海浮标 10 m风矢量数据对CMA-GFS、CMA-GFS_Unet和Fusion_QRT 3组风场资料进行了评估,结果表明,CMA-GFS_Unet风场质量得到显著提升,Fusion_QRT风场风速质量得到进一步改善,但风向质量略有降低:相较于CCMP,3组风场的风速平均绝对误差(MAE)分别为 1.13 m/s、0.89 m/s和 0.84 m/s,CMA-GFS_Unet和Fusion_QRT相较于CMA-GFS分别提升了 21.3%和 25.7%;风向MAE分别为 17.5°、15.5°和 16°,分别提升了 11.3%和 8.6%;而相较于浮标,风速MAE分别为 1.50 m/s、1.36 m/s和 1.28 m/s,分别提升了 9.3%和 14.7%;风向MAE分别为 23.3°、22.7°和 24.0°,分别提升了 3.0%和-3.9%.
An intelligent algorithm for constructing quasi-real-time sea surface wind field
In this paper,the correction model of CMA-GFS numerical model wind field is constructed based on the deep learning U-Net network,and the construction of the quasi-real-time sea surface wind field is rapidly accom-plished by interpolation method using the corrected wind field with the correction model as the background field(CMA-GFS_Unet),and using the scatterometer sea surface wind data from the four satellites,namely,HY-2B/2C/2D and MetOp-B as the observation data.This intelligent algorithm can realize the generation of global sea surface fusion wind field(Fusion_QRT)with a spatial resolution of 0.25° and a temporal resolution of 6 hours in quasi-real time with a lag of 3 hours.The CMA-GFS,CMA-GFS_Unet and Fusion_QRT wind fields are evaluated using the CCMP fusion wind field data and the 10 m wind vector data from the Chinese offshore buoys,respect-ively.The results show that the quality of the CMA-GFS_Unet wind field has been significantly improved,and the quality of the wind speed of the Fusion_QRT wind field has been further improved but the quality of the wind direc-tion has been slightly reduced.The mean absolute errors(MAEs)of wind speed are 1.13 m/s,0.89 m/s and 0.84 m/s for the three wind fields by using CCMP data as reference,and the CMA-GFS_Unet and Fusion_QRT wind fields have improved by 21.3%and 25.7%compared to the CMA-GFS,respectively;while the MAEs of wind direction are 17.5°,15.5° and 16°,and have improved by 11.3%and 8.6%,respectively.The MAEs of wind speed are 1.50 m/s,1.36 m/s and 1.28 m/s for the three wind fields by using buoy data as reference,and have improved by 9.5%and 14.7%,respectively;while the MAEs of wind direction are 23.3°,22.7° and 24.0°,and have improved by 3.0%and-3.9%,respectively.

U-NetCCMPCMA-GFSHY-2B/2C/2DMetOp-Bquasi-real-timesea surface wind field

刘晓燕、宋晓姜、郭安博宇、郝赛、彭炜

展开 >

国家海洋环境预报中心,北京 100081

自然资源部海洋灾害预报技术重点实验室,北京 100081

U-Net CCMP CMA-GFS HY-2B/2C/2D MetOp-B 准实时 海面风场

国家重点研发计划自然资源部空间海洋遥感与应用研究重点实验室开放基金

2023YFC3107901202102004

2024

海洋学报(中文版)
中国海洋学会

海洋学报(中文版)

CSTPCD北大核心
影响因子:1.044
ISSN:0253-4193
年,卷(期):2024.46(6)