首页|基于光学卫星遥感的海岸带水体盐度反演方法研究

基于光学卫星遥感的海岸带水体盐度反演方法研究

扫码查看
海岸带区域地表水体的盐度信息可以反映海水侵袭、海岸线退化以及土地盐碱化等生态状况,对滨海区域的海洋和陆地生态系统的研究、保护和资源开发有重要意义,但其监测主要依赖于现场测验,技术手段较为单一.卫星遥感方法具有高效、大范围的优势,本文采用高空间分辨率的光学遥感卫星开展海岸带地表水体盐度的反演方法研究,在分析单波段反射率、波段比值及常用的光谱指数与水体盐度相关性基础上,确定了水体盐度的敏感波段,构建了经验模型、半经验模型和随机森林模型,并对盐度反演的精度和结果进行比较与分析.结果表明,随机森林模型反演结果的检验精度较高,决定系数R2为0.81,RMSE为193.01 μS/cm,且精度稳定;半经验辐射传输模型检验的决定系数R2为0.53,RMSE为303.82 μS/cm;经验统计模型检验的决定系数R2为0.16,RMSE为407.46 μS/cm.该研究为掌握海岸带地表水质空间特征、分析水质时间变化、评价水资源可利用性提供了重要的技术途径,对海岸带生态环境的调查监测、修复治理具有重要意义.
Research on retrieval method of coastal water salinity based on optical satellite remote sensing
The salinity information of surface water in the coastal zone can reflect the ecological status of seawater invasion,coastline degradation and land salinization,which is of great significance to the research,protection,and resource development of marine and terrestrial ecosystems in the coastal region.However,its monitoring mainly relies on field tests,and the technical means are relatively simple.Since satellite remote sensing has the advantage of high efficiency and wide range,this paper adopts optical remote sensing satellite with high spatial resolution to carry out research on inversion method of surface water salinity in coastal zones.Based on analysis of single-band reflectance,band ratio,and correlation between commonly used spectral index and water salinity,the sensitive band of water salinity is determined.The empirical model,semi-empirical model,and random forest model are constructed,and the accuracy and results of salinity inversion are compared and analyzed.The results show that the random forest model has high accuracy,with the determination coefficient R2 of 0.81 and the RMSE of 193.01 μS/cm,and its accuracy is stable.The semi-empirical radiative transfer model has the determination coefficient R2 of 0.53 and the RMSE of 303.82 μS/cm.The empirical statistical model has the determination coefficient R2 of 0.16 and the RMSEof 407.46 μS/cm.This study provides an important technical approach to grasp the spatial characteristics of surface water quality in coastal zones,analyze the temporal changes of water quality,and evaluate the availability of water resources.It is of great significance to the investigation,monitoring,restoration,and management of coastal ecological environment.

coastal zone remote sensingwater salinityempirical statistical modelmachine learningSERT model

孙艳艳、曹洪涛、张甲波、刘宪华、么嘉棋、崔铁军

展开 >

天津师范大学 京津冀生态文明发展研究院,天津 300387

河北省海洋岸线生态修复与智慧海洋监测工程研究中心,河北 秦皇岛 066000

天津大学 环境科学与工程学院,天津 300350

海岸带遥感 水体盐度 经验统计模型 机器学习 SERT模型

河北省海洋岸线生态修复与智慧海洋监测工程研究中心开放基金课题高分专项政府综合治理应用与规模化产业化示范项目

53H2303966-Y50G03-9001-22/23

2024

海洋信息技术与应用
国家海洋信息中心

海洋信息技术与应用

影响因子:0.24
ISSN:2097-0307
年,卷(期):2024.39(4)