首页|融合摄食过程声像特征的鱼类摄食强度量化方法研究

融合摄食过程声像特征的鱼类摄食强度量化方法研究

扫码查看
基于鱼类摄食行为反馈的精准投喂是确保饲料高效利用与降低水体污染的有效手段,针对当前单一传感器难以精确测量鱼群摄食强度的难题,提出一种基于摄食过程声像特征融合的鱼类摄食强度量化方法.首先利用深度图包含的三维空间信息分析水体表层摄食鱼类数量,设计基于帧间差分运算的深度图能量变化测量系统表征鱼群摄食活跃程度;进而利用近红外光源因水面反射而导致的高亮度饱和点在近红外图中的位置变化测量水体流场的波动程度;同时利用音轨记录仪存储摄食音频.最后通过加权融合方式,综合摄食动态、水体流场变化、摄食音频三类具有不同物理属性的特征信息,精确量化了鱼群摄食强度,总体识别精确度达到97%.本文采用新的成像技术,取得分析速度与分析精度的最佳平衡,为精准投喂提供了 一种鲁棒性强、分析速度快的实用方法.
SENSITIVE DETECTION OF FISH FEEDING INTENSITY BY USING SOUND AND IMAGE FEATURES OF FEEDING PROCESS
Accurate assessment of fish appetite is of great significance for guiding feeding and production practice.However,most of the previous methods for assessment of fish feeding intensity have problems of high computational complexity and low precision.To achieve an automatic objective evaluation of fish feeding intensity,we proposed an improved multi-features fusion algorithm.First,a multi-track audio recorder was used to store the feeding audio.Due to the positive correlation between feeding audio and feeding intensity,the amplitude of the audio was as one of the parameters to evaluate feeding intensity.Secondly,a depth camera named Azure Kinect was selected to analyze the feeding dynamics of fish.The sensor based on 3D single point imaging technology,which can provide geometric information of 3D environment with high-frame rate.The whole feeding process was recorded in real time by using depth image and near infrared image,and 3D spatial information contained in the depth map was used to count the number of fish at the surface of water.During fish preying at water surface,the pixel value of the depth map fluctuates strongly.The feeding intensity of fish was quantified by continuously calculating the difference of depth map.Thirdly,the intensity of water level fluctuation during feeding was measured synchronously by using an IR camera,which is included in Azure Kinect system.Fluctuation of water caused by feeding changes the condition of specular reflection,the position of high brightness pixels produced by the reflection of near-infrared light source changes significantly in a near-infrared image.Finally,by combining the characteristic information of feeding dynamics,water level fluctuation,and feeding audio,the evaluation accuracy of fish feeding intensity reached 97%.This study adopted new imaging techniques to achieve the best performance in analysis speed and accuracy,and provided a practical method in strong robustness and fast analysis speed for precise feeding.

fish feeding intensitynear infrared imagedepth mapfeeding audiofeature weighted fusion

郑金存、叶章颖、赵建、张慧、黄平、覃斌毅、庞毅

展开 >

玉林师范学院物理与电信工程学院 广西玉林 537000

广西高校复杂系统优化与大数据处理重点实验室 广西玉林 537000

浙江大学生物系统工程与食品科学学院 浙江杭州 310058

玉林师范学院生物与制药学院 广西玉林 537000

展开 >

鱼摄食强度 近红外图 深度图 摄食音频 加权融合

国家大宗淡水鱼产业技术体系建设项目广西壮族自治区重点研发计划国家级大学生创新创业训练计划

CARS-45-24号2022AB20139号202210606017号

2024

海洋与湖沼
中国海洋湖沼学会 中国科学院海洋研究所

海洋与湖沼

CSTPCD北大核心
影响因子:0.737
ISSN:0029-814X
年,卷(期):2024.55(3)