首页|基于YOLOv8模型的凡纳滨对虾(Litopenaeus vannamei)摄食强度量化及分类方法研究

基于YOLOv8模型的凡纳滨对虾(Litopenaeus vannamei)摄食强度量化及分类方法研究

扫码查看
为实现凡纳滨对虾(Litopenaeus vannamei)摄食强度量化及分类,克服投喂主观性,优化饲料利用率.实验采用YOLOv8模型对凡纳滨对虾进行识别和检测以及YOLOv8-segment模型对凡纳滨对虾的虾头进行分割,根据饲料区域内对虾的数量和虾头的像素面积,实现对虾摄食强度的量化,并利用Convnext模型将图像中对虾的摄食强度划分为强摄食、中摄食和低摄食3个级别.实验结果显示,迭代200次后,YOLOv8模型对饲料区域内对虾目标检测的mAP50达到了 99.5%,YOLOv8-segment模型对虾头分割的mAP50达到了 92.1%,展现了 YOLOv8模型的强大性能.经实验验证发现,在不同摄食强度下饲料区域内对虾的数量和虾头的像素面积存在明显差异.Convnext模型对凡纳滨对虾3种摄食强度的图像分类准确率为98.8%.该方法可以客观有效地将对虾摄食强度进行量化,并将对虾的摄食强度进行分类,为实现对虾的精准投喂提供了理论基础和技术支撑.
YOLOv8 BASED FEEDING INTENSITY OF LITOPENAEUS VANNAMEI QUANTIFICATION AND CLASSIFICATION METHODS
To quantify and classify the feeding intensity of Litopenaeus vannamei and overcome the subjectivity of feeding,and optimize the feed utilization rate.The experiment used the YOLOv8 model to identify and detect L.vannamei and the YOLOv8-segment model to segment the shrimp heads.Based on the number of shrimp in the feeding area and the pixel area of the shrimp head,the feeding intensity of the shrimp was quantified.The feeding intensity of the shrimp was then classified using the Convnext model,dividing the images into strong feeding,moderate feeding,and low feeding categories.The experimental results showed that after 200 iterations,the mAP50 of the YOLOv8 model for detecting shrimp targets in the feeding area reached 99.5%,and the mAP50 of the YOLOv8-segment model for segmenting the shrimp head reached 92.1%,which demonstrated the strong performance of the YOLOv8 model.The experiment verified that there were significant differences in the number of shrimp in the feeding area and the pixel area of the shrimp head under different feeding intensities.The classification accuracy of the Convnext model for the three feeding intensity categories of L.vannamei was 98.8%.This method can objectively and effectively quantify and classify the feeding intensity of L.vannamei,providing a theoretical basis and technical support for precise feeding of the shrimp.

Litopenaeus vannameiquantification of feeding intensitycomputer visionYOLOv8

王磊、赵海翔、崔鸿武、黄桢铭、高阳、李皓、崔正国、曲克明、朱建新

展开 >

浙江海洋大学水产学院 浙江舟山 316022

中国水产科学研究院黄海水产研究所 农业农村部海洋渔业与可持续发展重点实验室 山东青岛 266071

上海海洋大学水产与生命学院 上海 201306

中国海洋大学水产学院 山东青岛 266003

展开 >

凡纳滨对虾 摄食强度量化 计算机视觉 YOLOv8

国家重点研发计划山东省重点研发计划中国水产科学研究院基本科研业务费

2023YFD2400403号2023TZXD052号2023TD53号

2024

海洋与湖沼
中国海洋湖沼学会 中国科学院海洋研究所

海洋与湖沼

CSTPCD北大核心
影响因子:0.737
ISSN:0029-814X
年,卷(期):2024.55(5)