首页|基于残差学习网络的自监督图像去噪

基于残差学习网络的自监督图像去噪

扫码查看
基于深度学习的图像去噪算法,通过使用大量数据进行网络训练取得了更为广泛的发展,但在实际场景中难以获得没有噪声的干净图像,因此,出现了自监督深度学习技术.如何提高自监督学习的去噪性能,以及自监督学习方法如何对各种网络进行自适应,基于这2个问题提出一种自监督图像去噪方案:对有噪声的图像进行2次子采样来生成图像训练对,结合UNet和ResNet形成1个有效的去噪网络,在这个过程中通过建立更深层次的卷积网络,提高最新的自监督去噪Neighbor2Neighbor算法的性能,同时精心调整训练参数来避免梯度爆炸.实验结果表明,与原算法相比,PSNR值平均提高了 0.3 dB,SSIM值平均提高了 0.004,并且验证了 Neighbor2Neighbor算法的训练策略对不同网络结构的鲁棒性.
Self-Supervised Image Denoising With a Residual Learning Network
Image denoising through deep learning has seen significant advancements utilizing a large volume of data for network train-ing.However,acquiring clean,noise-free images under real-world conditions remains challenging,leading to the emergence of self-supervised deep learning techniques.Addressing the questions of enhancing self-supervised learning performance and its adaptability across multiple networks,we introduce a self-supervised image denoising approach.Our proposed method involves generating image training pairs by subsampling the noisy image twice and integrating UNet and ResNet to create a robust denoising network.By effec-tively combining these elements,we aim to enhance the denoising capabilities of the latest self-supervised technique,Neighbor2Neigh-bor.Our strategy focuses on constructing a deeper convolutional network while mitigating potential issues like gradient explosion through meticulous parameter tuning.Experimental results demonstrate the efficacy of our approach,showcasing an average improve-ment of 0.3 dB in PSNR value and 0.004 in SSIM value compared to the original algorithm.Additionally,the study confirms the adapt-ability and robustness of the training strategy within the Neighbor 2Neighbor algorithm across various network architectures.

image denoisingself-supervised learningdeep neural networksNeighbor 2Neighbor

谢中华、钟家宝、李禹莹、罗宜元、刘玲君

展开 >

惠州学院 计算机科学与工程学院,广东 惠州 516007

图像去噪 自监督学习 深度神经网络 Neighbor2Neighbor

国家自然科学基金广东省教育厅重点领域专项

620011842023ZDZX1025

2024

惠州学院学报
惠州学院

惠州学院学报

CHSSCD
影响因子:0.254
ISSN:1671-5934
年,卷(期):2024.44(3)
  • 21