首页|一种非线性动态权重的粒子群寻优改进算法

一种非线性动态权重的粒子群寻优改进算法

扫码查看
在传统的线性递减惯性权重粒子群优化算法(Linearly Decreasing Inertia Weight Particle Swarm Optimi-zation,LDW-PSO)中,惯性权重通过一个固定的线性递减方式进行调整.这种方法在适应具体问题和反映算法当前状态方面存在局限性.为了克服这些限制,在线性递减权重的基础上引入了幂律分布函数,提出了一种新的自适应权重计算方法.该方法使得惯性权重能够根据迭代次数的增加,按照幂律函数的非线性规律逐渐减小,从而在算法的早期阶段增强全局搜索能力,在后期阶段更侧重于局部搜索.通过这种灵活的权重调整,改进方法能够有效提升粒子群优化算法的性能.为了验证所提出方法的有效性,采用4种基准测试函数进行性能分析.实验结果表明,与传统的线性递减权重方法和标准粒子群优化算法相比,改进后的算法展现了更优的搜索能力和更好的收敛性能.
A Nonlinear Dynamic Weight Particle Swarm Optimization Improvement Algorithm
In the traditional Linearly Decreasing Inertia Weight Particle Swarm Optimization(LDW-PSO)algorithm,the inertia weight is adjusted through a fixed linearly decreasing method.Although this approach is simple,it has limitations in adapting to specific prob-lems and reflecting the current state of the algorithm.To overcome these limitations,this paper introduces a power-law distribution function based on the linearly decreasing weight and proposes a new adaptive weight calculation method.This method allows the inertia weight to decrease gradually according to the nonlinear rule of the power-law function as the number of iterations increases,thereby enhancing the global search capability in the early stages of the algorithm and focusing more on local search in the later stages.Through this flexible weight adjustment,the improved method can effectively enhance the performance of the particle swarm optimization algo-rithm.To verify the effectiveness of the proposed method,this paper uses four benchmark test functions for performance analysis.Ex-perimental results show that,compared to the traditional linearly decreasing weight method and the standard particle swarm optimization algorithm,the improved algorithm demonstrates superior search capabilities and better convergence performance.

particle swarm optimizationinertia weightfitnessoptimal solution

李玲香

展开 >

湖南科技学院 信息工程学院,湖南 永州 425000

粒子群优化 惯性权重 适应度 最优解

湖南省自然科学基金项目湖南省社会科学成果评审委员会课题永州市指导性科技计划项目湖南科技学院科学研究项目湖南科技学院科学研究项目湖南科技学院校级教学改革重点项目

2024JJ7202XSP22YBZ0542023YZ010[2022]108号34XKYJ2022010

2024

惠州学院学报
惠州学院

惠州学院学报

CHSSCD
影响因子:0.254
ISSN:1671-5934
年,卷(期):2024.44(3)
  • 9