首页|基于深度网络模型融合的乳腺病理图像分类研究

基于深度网络模型融合的乳腺病理图像分类研究

扫码查看
乳腺组织活检的病理分析具有重要的临床应用价值.针对人工提取特征分类算法存在的耗时耗力、提取特征不完整等问题,此研究结合深度学习,提出了一种基于多阶段迁移和注意力机制的模型融合方法,对乳腺病理图像进行良恶性分类.为加快训练收敛速度及使用不同病理图像数据集的图像特征,研究采用多阶段迁移学习,并在网络中加入注意力机制,通过学习图像通道和空间上的重要特征,抑制无用的特征来提高分类准确率.最后为同时利用数据集不同倍数图像的特征,建立模型融合网络进行分类.该网络对图像良恶性分类的AUC值为0.946.实验结果表明,基于多阶段迁移和注意力机制的模型融合方法在乳腺病理图像分类上取得了较高的准确率,对乳腺癌诊断具有积极的指导意义.
Research on the classification of breast pathological images based on fusion of deep network models
The pathological analysis of breast tissue biopsy has important clinical application value.Aiming at the problems of time-consuming,labor-intensive,and incomplete extracted features in the manual extraction feature classification algorithm,this study combines with deep learning and proposes a model fusion method based on multi-stage migration and attention mechanism for benign and malignant breast pathological images classification.In order to speed up the training convergence speed and use the image features of different pathological image datasets,this paper adopts multi-stage transfer learning,and at the same time adds an attention mechanism to the network,and suppresses unnecessary features by learning important features in image channels and space classification accuracy.Finally,in order to utilize the features of images of different multiples of the dataset at the same time,a model fusion network is established for classification.The network achieves an AUC of 0.946 for classifying benign and malignant images.The experimental results show that the model fusion method based on multi-stage transfer and attention mechanism has achieved high accuracy in the classification of breast pathological images,which has positive guiding significance for breast cancer diagnosis.

breast cancerpathological image classificationmulti-stage transferattention mechanismmodel fusion

刘世博、范明、厉力华

展开 >

杭州电子科技大学自动化学院,杭州 310018

乳腺癌 病理图像分类 多阶段迁移 注意力机制 模型融合

2024

杭州电子科技大学学报
杭州电子科技大学

杭州电子科技大学学报

影响因子:0.277
ISSN:1001-9146
年,卷(期):2024.44(9)