首页|基于ResMO-Dense-YOLO的牛只检测算法

基于ResMO-Dense-YOLO的牛只检测算法

扫码查看
牛只目标检测是基于深度学习的牛只个体注册与牛只识别的前提,不同实际场景下光照、色彩与牛只品种的差异使得牛只图像低层特征多样化,而高层特征中语义信息若不能完全匹配多样化的低层特征,则无法得到较好的检测精度.为解决检测模型高层特征语义不足问题,本文提出了新的牛只特征提取骨干网络 ResMO-Backbone 与特征融合网络 Dense-Neck,进而提出了基于ResMO-Dense-YOLO的牛只检测算法.在骨干网络中利用 ResMO 模块多语义层面关注牛只高层特征的特性丰富语义信息,结合SPPF结构和多层卷积结构扩大感受野,使得模型更好地提取牛只的高层特征;然后提出基于 DenseBlock 的特征金字塔和基于 DenseBlock 的路径聚合网络级联的 Neck网络Dense-Neck,利用DenseBlock对特征多次复用的特性,结合特征金字塔与路径聚合网络多尺度融合的特性进一步融合牛只的低层特征位置信息与高层特征语义信息,提高模型检测精度.本文的模型与 FLYOLOv3、SSD、YOLOv5s 等目标检测模型相比,在实验室采集的奶牛通道、奶牛牛舍和肉牛牛舍数据集中平均精确率分别提高 40.1%、30.3%、4.0%,召回率分别提高34.9%、23.1%、6.8%,mAP提高了 49.2%、35.3%、5.0%.
A Cattle Detection Algorithm Based on ResMO-Dense-YOLO
Cattle target detection is a prerequisite for individual registration and recognition of cattle based on deep learning.The differences in lighting,color and breed in different actual scenarios make low-level features of cattle images diverse,while semantic information in high-level features cannot fully match the diverse low-level features,resulting in poor detection accuracy.In order to solve the problem of insufficient high-level feature semantics of the detection model,this paper designs a new cattle feature extraction backbone network ResMO Backbone and feature fusion network Dense Neck,and proposes a cattle detection algorithm based on ResMO Sense YOLO.In the backbone network,the ResMO module(ResBlock MHSA ODConv)is used to focus on the characteristics of cattle high-level features at multi-semantic level to enrich semantic information,and the SPPF structure and multi-layer convolution structure are combined to expand the receptive field,so that the model can better extract cattle high-level features;then,a feature pyramid based on DenseBlock and a feature fusion network cascaded with a path aggregation network based on DenseBlock are proposed,which utilize the feature reuse feature of DenseBlock and combine the multi-scale fusion feature of the feature pyramid and path aggregation network to further integrate the low-level feature position information and high-level feature semantic information of cattle,improving model detection accuracy.Compared with the FLYOLOv3,SSD and YOLOv5s,the model in this paper shows an average accuracy improvement of 40.1%,30.3%,and 4.0%in the data sets of cow channels,cow sheds,and beef sheds collected in the laboratory.The recall rate increased by 34.9%,23.1%,and 6.8%,respectively,and the mAP increased by 49.2%,35.3%,and 5.0%.

YOLOv5scattle detectionmultiple attentiondense connection

黄安祥、沈雷、蓝雷斌、方一昊

展开 >

杭州电子科技大学通信工程学院,浙江 杭州 310018

YOLOv5 牛只检测 多头注意力 稠密连接

2024

杭州电子科技大学学报
杭州电子科技大学

杭州电子科技大学学报

影响因子:0.277
ISSN:1001-9146
年,卷(期):2024.44(11)