首页|基于DCNN的OTFS系统分数多普勒信道估计方法

基于DCNN的OTFS系统分数多普勒信道估计方法

扫码查看
当OTFS调制被用于实际数据传输时,多普勒分辨率通常较低,这会导致分数多普勒频移的出现,致使接收的符号在衰落信道中遭受多普勒间干扰,从而降低信道估计的准确性.为此,提出一种基于深度学习的 OTFS系统分数多普勒信道估计方法.该方法首先使用互相关算法对分数多普勒信道进行初步估计,然后搭建并训练深度卷积神经网络用于初步信道估计结果的优化,从而达到有效提升 OTFS分数多普勒信道估计精度的目的.仿真实验表明:新提出的方法结合了传统算法和深度学习的优势,可实现了约 6dB的性能增益,有效提升了对于 OTFS分数多普勒信道估计的精确性;同时该方法能够有效应对信道失配的情况,在多种高移动性场景下的性能差异低于 30%,具备一定程度的鲁棒性.
A Fractional Doppler Channel Estimation Method for OTFS System Based on DCNN
When OTFS modulation is used for actual data transmission,the Doppler resolution is usually low,leading to fractional Doppler frequency shifts and causing Doppler inter-symbol interference in fading channels,which reduces the accuracy of channel estimation.To address this issue,a deep learning-based fractional Doppler channel estimation method for OTFS systems is proposed.Firstly,the cross-correlation algorithm is used for the initial estimation of fractional Doppler channels in the method;and then,a deep convolutional neural network is built and trained to optimize the preliminary channel estimation results,thus effectively improving the accuracy of OTFS fractional Doppler channel estimation.Simulation experiments show that by combining the advantages of traditional algorithms and deep learning,the proposed method achieves an approximate 6 dB performance gain,effectively enhancing the accuracy of OTFS fractional Doppler channel estimation.Moreover,the method is capable of effectively addressing channel mismatch,with performance differences in various high-mobility scenarios being less than 30%,demonstrating a certain level of robustness.

OTFSFractional DopplerChannel EstimationDCNN

孙文胜、许崇旸

展开 >

杭州电子科技大学通信工程学院,浙江 杭州 310018

OTFS 分数多普勒 信道估计 DCNN

2024

杭州电子科技大学学报
杭州电子科技大学

杭州电子科技大学学报

影响因子:0.277
ISSN:1001-9146
年,卷(期):2024.44(11)