首页|带有强奇异性的振荡Bessel变换的高效计算方法

带有强奇异性的振荡Bessel变换的高效计算方法

扫码查看
为了研究带有强奇异性的振荡 Bessel 积分的计算问题,通过数值最速下降法构造了一个新的积分公式.首先,利用Taylor多项式,基于积分区间的可加性,将积分分成三个积分;其中两个积分可根据Bessel函数与两类 Hankel函数之间的关系转化为Fourier型积分.然后,根据Cauchy定理,将 Fourier型积分转化为无穷积分,再通过 Gauss-Laguerre 积分法则高效地计算.其次,另一个积分可以通过 Meijer G函数与Bessel函数之间的关系式来表示.最后,对所提出的积分公式进行了误差分析,通过数值例子验证误差分析的正确性以及数值方法的高效性和精确性.
Effective Calculation of Oscillatory Bessel Transform with Strong Singularity
In order to study the calculation problem of oscillatory Bessel integral with strong singularity,a new integration formula is constructed by the numerical steepest descent method.Firstly,Taylor polynomial is used to divide the integral into three integrals based on the additivity of the integral interval.Two of them can be transformed into Fourier type integrals according to the relationship between Bessel function and Hankel functions.Then,according to Cauchy theorem,Fourier type integrals can be transformed into infinite integrals,which can be effectively calculated by Gauss Laguerre quadrature rules.Secondly,with the help of the relationship between Meijer G function and Bessel function,another integral is represented by an explicit expression.Finally,the error analysis of the proposed quadrature formula is carried out.Numerical examples have verified the correctness of error analysis,and the efficiency and the accuracy of numerical methods.

Bessel functionHankel functionoscillatory integralstrong singularitynumerical steepest descent methoderror analysis

周玉景、康洪朝

展开 >

杭州电子科技大学理学院,浙江 杭州 310018

Bessel函数 Hankel函数 振荡积分 强奇异性 数值最速下降法 误差分析

2024

杭州电子科技大学学报
杭州电子科技大学

杭州电子科技大学学报

影响因子:0.277
ISSN:1001-9146
年,卷(期):2024.44(11)