首页|农村低保瞄准偏差估计及乡村治理手段创新的改进效应——基于双重机器学习的因果推断

农村低保瞄准偏差估计及乡村治理手段创新的改进效应——基于双重机器学习的因果推断

扫码查看
基于2022年湖北省村户调查数据,结合现行低保政策规定与实践中存在的收入核减和"单人保"情况,依据事前收入"整户保"、核减事前收入"整户保"和核减事前收入"单人保"三种低保资格认定方式,分析不同低保资格认定方式下的农村低保瞄准偏差,并使用双重机器学习方法检验村级乡村治理手段创新对农村低保瞄准偏差的影响.研究发现:农村低保瞄准偏差较大,已有研究认定低保应保对象时,忽略了收入核减和"单人保"情况,存在低估漏保率和高估错保率的缺陷.实证检验表明,村级乡村治理手段创新对农村低保瞄准偏差具有显著且稳健的改进效应.据此,应加大积分制、清单制和数字化等乡村治理手段创新的完善和推广力度,进一步完善救助对象主动发现和认定方式.
Estimation of Targeting Bias for Rural Dibao and the Improvement Effect of Rural Governance Innovation——Causal Inference Based on Double Machine Learning
This study,based on data from the 2022 Hubei Province village household survey,evaluates the targeting bias in rural Dibao(minimum living allowance)by considering the current Dibao policy regulations and practices of income deduction as well as"single person assistance".It examines the targeting bias of rural Dibao in terms of three types of Dibao eligibility criteria:pre-income for whole household assistance,pre-income deduction for household assistance and pre-income deduction for single person assistance.Using the double machine learning method,this study examines the improvement ef-fect of rural governance innovation on the targeting bias of rural Dibao.The findings reveal substantial targeting bias,with previous research failing to account for income deductions and"single-person assis-tance,"leading to an underestimation of exclusion errors and an overestimation of inclusion errors..Em-pirical tests demonstrate that rural governance innovations significantly and robustly improve targeting ac-curacy of rural Dibao.Therefore,it is recommended to enhance the refinement and promotion of rural governance innovations such as the points system,the list system,and digitization in rural governance,and to further improve the proactive identification and determination methods for assistance recipients.

Rural Dibaotargeting biasrural governancedouble machine learning

赵明华、田北海

展开 >

华中农业大学文法学院,湖北武汉 430070

农村低保 瞄准偏差 乡村治理 双重机器学习

2024

华中农业大学学报(社会科学版)
华中农业大学

华中农业大学学报(社会科学版)

CSSCICHSSCD北大核心
影响因子:1.704
ISSN:1008-3456
年,卷(期):2024.(5)