首页|遥感领域知识引导的自监督变化检测方法研究

遥感领域知识引导的自监督变化检测方法研究

扫码查看
基于深度学习的变化检测方法相较于传统方法具有更高的精度和稳定性,大多数深度学习模型属于监督方法,需要海量的标准样本,但是样本构建成本过高,而目前非监督变化检测方法的精度较低.针对这个问题,该文提出了一种遥感领域知识引导的自监督变化检测方法,结合对比损失和Vision Transformer设计了自监督表征学习架构,为了进一步提高检测精度,将NDVI和NDWI作为遥感领域知识与自监督表征学习的回归误差进行加权融合,以进一步提高变化检测精度.通过在法国巴黎萨克雷大学OSCD数据集上进行的实验表明,该方法检测结果的F1相较于其他非监督变化检测算法平均提高2.76%以上,并具有更高的稳定性和鲁棒性.
Research on self-supervised change detection method guided by remote sensing knowledge
Compared to traditional methods,change detection methods based on deep learning have higher accuracy and stability.Most deep learning models belong to supervised methods and require a large number of standard samples with high cost of sample construction.On the other hand,the current unsupervised change detection methods have lower accuracy.Aiming at the problem,a self-supervised change detection method fused with remote sensing knowledge is proposed,and a self-supervised representation learning framework is designed combined with multi-view contrastive loss and vision transformer.In order to further improve the detection accuracy,NDVI and NDWI are weighted and fused with the regression error of supervised representation learning as remote sensing knowledge to further improve the change detection accuracy.The experiment conducted on the OSCD dataset of the University of Paris Thackeray in France shows that the F1 detection result of this method has an average improvement of over 2.76%compared to other unsupervised change detection algorithms,and has higher stability and robustness.

change detectionremote sensing knowledgeself-supervised learning

夏旺

展开 >

中铁第四勘察设计院集团有限公司,武汉 430063

变化检测 遥感领域知识 自监督学习

国家重点研发计划

2021YFB2600400

2024

华中师范大学学报(自然科学版)
华中师范大学

华中师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.512
ISSN:1000-1190
年,卷(期):2024.58(3)