首页||x|在对数结点的有理插值

|x|在对数结点的有理插值

扫码查看
|x|的有理逼近是逼近论中非常重要的课题.该文首先研究了|x|在一类新的结点组(对数结点)的有理插值,对于|x||的逼近误差采用适当的放缩法得到逼近阶为O(1/nlog n).然后,在零点附近增加一些结构相同的结点,逼近阶可以提高到O((1/n2log n).最后,分析逼近阶相同的五类结点组的结构,并揭示其逼近本质:因为四类结点组都和对数结点组等价,所以|x|在五类结点组的误差是同阶的.这个结论说明结点组的结构特点对|x|的有理插值问题起到关键性作用.
On rational interpolation to|x|at the logarithmic nodes
The rational approximation of|x|is a very important topic in approximation theory.Firstly,the rational interpolation of|x|at a new class of node groups(logarithmic nodes)is studied in this paper,and it is obtained that the exact order of approximation is O(1/nlog n)by using appropriate scaling methods for approximation errors of|x|.Then,by adding some nodes with the same structure near the zero point,the approximation order can be increased to O(1/n2log n).Finally,the structure of five node groups with the same approximation order is analyzed to reveal their essence:because four types of node groups are equivalent to the logarithmic node groups,the error of|x|in five types of node groups is the same order.This conclusion indicates that the structural characteristics of node groups play a crucial role in the rational interpolation problem of|x|.

the logarithmic nodesrational interpolationNewman-type rational operatorsorder of approximation

张慧明、李建俊

展开 >

河北地质大学数理学院,石家庄 050031

河北师范大学附属民族学院,石家庄 050091

对数结点 有理插值 Newman型有理算子 逼近阶

河北省自然科学基金项目

A2019403169

2024

华中师范大学学报(自然科学版)
华中师范大学

华中师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.512
ISSN:1000-1190
年,卷(期):2024.58(4)