华中师范大学学报(自然科学版)2024,Vol.58Issue(6) :648-653.DOI:10.19603/j.cnki.1000-1190.2024.06.004

一个高阶μ-Camassa-Holm方程Cauchy问题解的解析性

Analyticity of the solutions of the Cauchy problem associated with a μ-Camassa-Holm equation with higher-order nonlinearity

高亚琴 王海权
华中师范大学学报(自然科学版)2024,Vol.58Issue(6) :648-653.DOI:10.19603/j.cnki.1000-1190.2024.06.004

一个高阶μ-Camassa-Holm方程Cauchy问题解的解析性

Analyticity of the solutions of the Cauchy problem associated with a μ-Camassa-Holm equation with higher-order nonlinearity

高亚琴 1王海权1
扫码查看

作者信息

  • 1. 太原理工大学数学学院,太原 030024
  • 折叠

摘要

该文通过构造一族递减的Banach空间,利用抽象的Cauchy-Kowalevski定理研究了一个高阶μ-Camassa-Holm方程Cauchy问题解的解析性.所得到的结论可直接应用到μ-Camassa-Holm方程和Hunter-Saxton方程上.

Abstract

By constructing a scale of decreasing Banach spaces and using the abstact Cauchy-Kowalevski theorem,analyticity of the solutions to Cauchy problem associated with a μ-Camassa-Holm equation with high-order nonlinearity is studied in this paper.The results can be directly applied to μ-Camassa-Holm equation and Hunter-Saxton equation.

关键词

高阶μ-Camassa-Holm方程/抽象的Cauchy-Kowalevski定理/解析性

Key words

μ-Camassa-Holm equation with high-order nonlinearity/abstract Cauchy-Kowalevski theorem/analyticity

引用本文复制引用

出版年

2024
华中师范大学学报(自然科学版)
华中师范大学

华中师范大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.512
ISSN:1000-1190
段落导航相关论文