首页|基于DRNN神经网络的造纸过程定量水分解耦控制分析

基于DRNN神经网络的造纸过程定量水分解耦控制分析

扫码查看
阐述造纸过程定量水分的控制技术,利用Matlab建立定量水分数学模型,分别采用常规PID算法和DRNN神经网络算法对定量水分耦合模型进行解耦控制,探讨神经网络来整定PID控制器参数,不依赖控制对象的数学模型就可以实现解耦控制.仿真结果表明,DRNN神经网络算法响应速度更快,自适应能力显著增强,可进一步改善系统的动态性能.
Analysis of Quantitative Water Decomposition Coupling Control in Papermaking Process Based on DRNN
This paper expounds the control technology of quantitative moisture in the papermaking process,establishes a mathematical model of quantitative moisture content using Matlab,decouples the quantitative moisture coupling model using conventional PID algorithm and DRNN neural network algorithm,and explores the use of neural networks to adjust PID controller parameters.Decoupling control can be achieved without relying on the mathematical model of the control object.The simulation results show that the DRNN neural network algorithm has a faster response speed and significantly enhanced adaptive ability,which can further improve the dynamic performance of the system.

intelligent controlquantitative moisture mathematical modelDRNN neural network algorithm

郑敏

展开 >

廊坊职业技术学院,河北 065000

智能控制 定量水分数学模型 DRNN神经网络算法

2021年廊坊市科学技术研究与发展计划自筹经费项目

2021011031

2024

集成电路应用
上海贝岭股份有限公司

集成电路应用

影响因子:0.132
ISSN:1674-2583
年,卷(期):2024.41(1)
  • 2
  • 3